DLWV.L Y rqje 4L

MSPM SECTION BZ.10,07

Identification

APL Operators and Requests

Purpose
This component of the APL interpreter contains the routines
which actually implement each of the many different primitive

functions, operators, and system requests of the APL language.

Environment

The request processor is called upon from three different

places:

. To process a request given as a command argument to
the APL command, the processor is called from the
parser's initialization sequence., The arguments of
the request will have beencollected as a character

string by the parser.

. To process a request entered in the normal way, the
processor will be called from the lexical analyzer
when it detects the initial right parenthesis. The
lexical analyzer will make available the remainder of

the line,

. To process a request programmably called by a function
reference in an APL statement being interpreted, the
processor will be called from the action coding of the
reduction rule detecting the call. The right-hand
operand of the function reference, which must be a
character array, is made available to the request

processor,

In each case, the arguments of the request are simply passed

to the request processor as character strings.,

The request processor validates the request name and dis~
patches to its handler, FEach handler is responsible for tear-

ing down its own arguments,

BZ.10,07 Page 2

The operator processors are all called only from the action
coding of reduction rules. Each rule which makes a promotion
to VAL, EXP, or LIST will, in generai,iball an operator routine
to perform the operation semantically implied by the promotion.
The operator routine sees the parser's reduction stack as it

is before the promotion, so that the argument tokens and

“pointers to the values they represent are accessible.

Each'operator routine individually checks the suitablity of
its arguments as to rank and type, signalling RANK, LENGTH,
DOMATIN errors as appropriate. Based on the input arguments,
an estimate is made of the type and size of the result, and
storage is allocated in the value segment to accept it. Then
the routine actually performs the operation. Finally, the
storage occupied by the operands is freed, and the operator
routine returns to the parser with the pointer to the result
value. The parser will restructure the reductions stack to
reflect the promotion, inserting the new value pointer into

the new stack top token.

In some cases, the estimated size of result can be too low

(e.g. integer + integer is estimated to yield integer, but in
fact the sum could overflow integer capaci%y and force conver-
sion to float). In these cases, the operator routine care-~
fully checks for overflow as it is performing the operation.

If overflow occurs, a new result space is allocated, previously
calculated results are copied from the old result space and
converted, the old result space is junked, and the operation
continues from the point of overflow detection, now storing

into the new result space.

In all cases, the states of value allocations are recorded
in standardized places, so that storage can be properly freed

in the event of an interrupt.

Operator Actions

The operators are triggered by reduction rules which promote

syntactic categories. The operation performed for each such

DLe LV, U/ rage 3J

reduction rule are summarized below, each listed below the

rule which triggers it.

The. operations numbered 1 through 4, 9 through 21, and 58 are
mostly concerned with proper maintenance of the reductions
stack, and do not have much significance to the APL language
itself. The operations numbered 22 through 57, on the other
hand, are responsible directly for implementation of the user-
accessible APL primitives. The operéfions numbered 5 through
8 are executed at the completion of the interpretion of a line;

hence, they shed light on the final disposition of a line,

1e val con $
. Copy the value located in the CON token over into
the value area. Set its usage count to 1,

. Set value pointer of VAL token to point to it.

2, val ‘ zfn §
o, Note that the usage bead pointed to by the usage
pointer in the ZFN token must be valid, because
no function calls have occured yet.

. ’An F-frame is spawned onto the stack,

. The F-frame is hooked to the function usage bead.
The usage count in the bead need not change, since
the reference in the ZFN token is disappearing.

. If the function allows a result, enter the local
name into the symbol table, and record its usage
pointer in the frame's local name list,

. If the function has local variables, enter them into
the symbol table, and record their usage pointers in

- the frame!s local name list.

. Scan the function's lexed lines for labels, enter
them into the symbol table with their values, and
record their usage pointers in the frame's local
name list.,

. Go to the top of the parse main loop.

. When the function returns, change the ZFN token to
a VAL token.

3.

5.

val

val

BZ.10.07 Page 4

Place the returned value pointer in the VAL token,

"qq $
Read the next line on the current input stream.
Create a character value in the value area, giving
it a usage count of 1,
Hook this VAL token to it.,

var §
The usage bead pointed to by the usage pointer of
this token must still be wvalid. |
Move the value pointer from the usage bead to the
VAL token.,
Signal VALUE ERROR if the pointer is null (distinguish
carefully between a null pointer and a null value).
Add one to the value's usage count; subtract one

from the variable's usage count,

bol § eol §

If this is an F-frame, SYNTAX ERROR on 7.

If there is no previous frame, SYNTAX ERROR on 3.

Back up to the previous frame, deallocating the

current frame,

This involves:

. If the frame has a parse stack, cycle through
it, deallocating values pointed -at by VAL, EXP,
and LIST beads.

. If the frame has a local-name-list, cycle through
the list deallocating the usage beads (and, if
the usage bead has a non-null value pointer,
deallocate the value bead too).

If the current frame now is not an S~frame, go back

to the previous step.

Go to the top of the parser's main loop.

bol § list eol $
If the current frame is an E-frame, SYNTAX ERROR on }.

If the current frame is an‘S-frame,

. If there is no previous frame, SYNTAX ERROR on 3.

e If the previous frame is not an F-frame, SYNTAX
ERROR on § .

. Deallocate the current frame and restore the

previous frame,
If the list has more than one member, print all
members on the current output stream.
If the list consists of exactly one non-existent
value (N.B.: value pointer is null, not null value),
then VALUE ERROR on it,
Unless the first expression of the list has an
integer value, DOMAIN ERROR on 3.
If trace is enabled for this line, print the trace
message.,
Set the new current line number,

Return to the top of the parser main loop.

bol list eol §
If the list has more than one member, or if the
PRINT indicator is on, print all wvalues,
I £ trace is enabled for this line, print the trace
message. '
If the current frame is an E-frame,
. VALUE ERROR on LIST unless the first expression
of the list has a value.
. Return a pointer to the first expression of the

list as the value of the evaluated input,

N Deallocate storage occupied by the remainder of
the 1l1list.
o Deallocate the current frame and return to the

processing of the evaluated-input call in the

preceding frame.

10.

11.

12,

13.

cop

cop

val

val

val

Do AVVeV{ rasge v

Otherwise, return the entire list to storage.
If the current frame is an F-frame, bump the line
number, \
Go to the top of the parser main loop.

bol eol §
If trace is enabled on this line, print the trace
message. ,
If the current frame is an F-frame, bump the line
number,

Return to the top of the parser main loop.

/ ¢

Place '/' in the third word of the COP token.

backslash $)
Place a backslash in the third word of the COP token.

_ (exp) $
Copy the value pointer from the EXP token to the
VAL token. ‘ '
Signal VALUE ERROR on EXP if the value pointer was
null. '
There is no need to set the "source" pointer of
the VAL token, since no further value error can

occur,

var / _J/ $

Ignore the brackets, This is treated the same as

action 4.

var [1ist_/ §
Has the usage bead pointed to by the VAR token been
junked? If so,
o Deallocate the Jjunked usage bead.
o Search the symbol table for a new referent for

the variable name.

14,

15,

‘ 16.

val

val

list

.

B4.10,07 Page 7

. If not found, SYNTAX ERROR on VAR,

. If found, but now function or group, SYNTAX
ERROR on VAR, T '

. Hook VAR token to new variable usage bead.

If value pointer in usage bead is null, VALUE ERROR
on VAR, _

CopyAthe value pointer to the VAL token. Bump the
value's usage count; decrement the variable's usage
count.

Now treat as action 15, below.

val /[]/ ¢

Ignore the brackets. Leave the value pointer in
the VAL token untouched.

If the value pointer is null, signal VALUE ERROR
on VAL,

val [/ 1ist_/ $
VALUE ERROR on VAL if its value pointer is null,
VALUE ERROR on LIST if it consists of exactly one
null expression,
Allocate space to hold the sub-array result: the
type of the result is the type of VAL; the rank of
the result is the sum of the ranks of the LIST
elements; the number of the result is the product
of the numbers of the list elements.
Extract the result.
Replace the value pointer in the VAL bead, de-
allocating the old wvalue.
Deallocate LIST wvalues.

list 3 § -
VALUE ERROR on LIST if it consists of exactly one
expression with a null value pointer.

Add an expression of null value pointer to the list.

BZ.10.07 Page 8

17. 1list : ; ¢
. Create a list consisting of exactly two expressions,
both with null value pointers.,
. Set the "source" pointer of the LIST token equal to

the "source" pointer of the semicolon token.

18. wval "qu $
. Spawn an E-frame on top of the current state frame.
. Go to the top of the parser main loop.
. When the E-frame returns, place the returned value
pointer into the VAL bead (it has already been checked
for VALUE ERROR).

19. exp ' val §
. Copy the wvalue p01nter from the VAL token to the
EXP token.,
. Set the PRINT switch ON, unless the value pointer is

null, in which case set it OFF,

20, list list ; exp §
o VALUE ERROR on EXP if its wvalue pointer is null.
. VALUE ERROR on LIST if it consists of exactly one
expression having a null value pointer.

. Add the expression to the list.

21, 1list s exp &

. VALUE ERROR on EXP if its value pointer is null.

. Create a list of two elements, the first having null
value pointer, the second having the value pointer
from EXP,

. Set "source" pointer in LIST token from "source"

pointer of semicolon token,

22, exp » "qu { exp $
o Slgnal VALUE ERROR on EXP if its wvalue p01nter is

null.,

23.

24,

25,

exp

exp

Mo edVewy rage 2o

Copy the value pointer into the new EXP node.
Print the value onto the current output stream.
Turn the PRINT switch OFF.

var { exp §
Signal VALUE‘ERROR on EXP if its value pointer is
null,
If the usage bead pointed to by the VAR token's usage
pointer has been junked:
. Deallocate the junked usage bead.
. Search the symbol table for a new referent for

the variable name.

. If none found, SYNTAX ERROR on VAR,
. If found, but not a variable, SYNTAX ERROR on VAR,
. Hook up to new usage bead.

If the value pointer in the usage bead is non-null,
deallocate the value.

Copy the expression's value pointer to the usage bead
and also to the new EXP token. Bump the usage count
of the value by one,

Decrease the variable's usage count by one.

Turn the PRINT switch OFF.

var 17;7 { exp $

Ignore the brackets., Treat as 23, above,

var [list_/ { exp §
VALUE ERROR on EXP if its value pointer is null.
VALUE ERROR on LIST if it consists of exactly one
member with a null value pointer.
Verify, as in action 23 above, that the referent
of the VAR token has not changed.
If the value usage count of the present value of the -
variable VAR is greater than one (the value is being
used for some other purpose as well), or if the type

of EXP is greater than the type of VAR, then copy

ALl AoV LAgT @awv

over the value., DOMAIN ERROR on { unless the types
of VAR and EXP are both numeric or both character.

. Substitute the new values into the variable's value
bead, as directed by the LIST.

. Deallocate the storage used by LIST and EXP,

« Turn the PRINT switch OFF,

26, exp stc { exp §

. VALUE ERROR on EXP if its value pointer is null.

. SYNTAX ERROR on STC unless the function named in it
actually exists.

. RANK ERROR on { unless the EXP has a value which is
a scalar, a vector, or consists of one element.

. Cycle through fhe elements of the expression, setting
stop and trace control bits on the applicable lines
of the function. DOMAIN ERROR on { if a non-integral
number is found, or a number for which no line exists.

.« Set the PRINT switch OFF. '

At this point, some general comments are given which apply to
- actions 27 through 57 (except 31 and hh, which have to do

with function calls). All these are various APL primitive

operators which promote to expressions. The actions for

them all obey the universal pattern:

. VALUE ERROR is signalled if and EXP or VAL appearing
in the construct has a null value pointer,

. RANK, LENGTH, and DOMAIN checks are made by the individual
-operators, as appropriate., See the individual discussions
below. v

. The type, rank, and number of the result value is cal-

culated, as appropriate to the individual operator.

. Space is allocated in the value area to hold the result
(the type, rank, and number determine how big the storage
allocation must be). |

. The actual operation is performed.

. If the estimate of the result space is wrong (which can

occur only because the result was assumed to be of type

27.

28,

29.1

29.2

BZ.10,07 Page 11

integer, but a result value has occured which overflows
integer capacity), the operator will catch the overflow,
allocate a new result space (of type float), copy over
the previous results converting them to floating, de-
allocated the old result space, and resume the operation,
working into the new result space.

Deallocate all VALs and EXPs,.

Save the pointer to the result in the new EXP token.

Turn the PRINT switch ON.

exp val sop exp §
exp val lop exp §
exp . ~ val ? exp §
. These three cases are treated alike.

. RANK ERROR on the operator unless the operand ranks
are identical (except that a scalar on either side
matches any rank by extension).

. LENGTH ERROR on the operator unless the rhos of
the operands are identical.

. The rank and number of the result is the common rank

- and number of the operands. The type of the result
v+ _depends. upon the type of the operands as well as
the particular operator. The chart on the next
page shows, for each operator, the type of the

result as a function of the types of the operands.

exp | val % exp $

. RANK ERROR unless VAL is a scalar-or a vector,

. The type of the answer is the type of EXP: the rank
of the answer is the rho of VAL; the number of the
answer is the multiplicatien-reduction of VAL,

. DOMAIN ERROR if the number of the answer is greater
than zero, but the number of EXP is zero, or if VAL

is other than numeric non-negative integer wvalued.

BZ.10.07 Page 11.5

Type of Result of Dyadic Operators
As a Function of Type of Left and Right Operands
(B=bit, I=integer, F=float, C=character,
J=try integer but may go to float, -=DOMAIN ERROR)

operation BB BI BF BC IB II IF IC FB FL FF ¥C CB CI CF CC
t-&%%v I J F - J J F - F F P - o - - _
+# B I F -« I F F =« F F F e e o - _
"ce "f1 B I F - I I F « F F F e o _ _ =
¥* B B B - I J F = F F F e o e - _
"lo - - « -« B F F - B F F - o o _ =
I'"en B I F - B F F - F F P - - - - -
! B I F « B J F -« B F F = e o - .
? B I ~« -« B I = = e e m e e o
"ei F F F =« F F F e o e - oo oo
"an "or - B - - - - - - - - - - - - - - -
"na "no B - - - - - - - - - - - - - - -
({3 B B B - B B B = B B B - - - - .
=#™p B B B - B B B - B B B - - - _ B
» B I F - I I F « F F F =« o o - ¢
$"p"o B I F ¢€C B I F € -~ - - - - - = -
“rr tr - B I F C B I F C - - - - - - - -
$ I I I - I I I « I I T = e e - I

/\ B 1 F ¢ - - - . - - e e -

Type of Result of Monadic Operators
As a Function of Type of Right Operand

operation B I F C
+ B I F -

; - B J FP -

& "gu "gd I I I -
"lo B F F

ce "f1 B I J -

¥ Yei F F F -

1 B J F -

$?2 B I - -

tilde B « a -

$ I I I I

B I F C

s "rr “tr

BZ2.10.07 Page 12

29.3 exp val sy €exp §
. DOMAIN ERROR if VAL and EXP are not both type
numeric or both type character.
. The type of the answer is given in thé chart.
The rank of the answer is one. The number of the

answer is the sum of the numbers of VAL and EXP,

29.4 exp val $ exp $
. DOMAIN ERROR if VAL and EXP are not both type
numeric or both type character,
. RANK ERROR unless VAL is a scalar or a vector.
. The type of the result is integer. The rank and

number of the result are the rank and number of EXP.

29.5 exp val "tr exp $
. RANK ERROR unless the rho of VAL is equal to the
rank of EXP, except that a scalar VAL will match
a vector EXP,
. DOMAIN ERROR unless VAL is of type numeric, and has
values chosen from and exhausting the set $ "ce/VAL.
. The type, rank, and number of the result are the

type, rank, and number of EXP,

29.6 exp ’ val "rf exp $
« RANK ERROR unless the rho of VAL is equal to %(”1'doEXP).
. DOMAIN ERROR unless VAL is numeric integer valued.
. The type, rank, and number of the result are the type,
rank, and number of EXP,

30.1 exp : val "up exp $
. RANK ERROR unless VAL is a scalar or a vector,
. RANK ERROR unless the number of VAL is equal to the
rank of EXP.
o DOMAIN ERROR unless ("an/(%EXP)>|VAL) = 1.
. The type and rank of the result are the type and rank
of EXP, The number of tle result is the multiplication-

BZ.10,.07 Page 13

reduction of the magnitude of VAL.

30.2 exp val "do exp §
. RANK ERROR unless VAL is a scalar or a vector.
. RANK ERROR unless the number of VAL is equal to the.
rank of EXP,
. DOMAIN ERROR unless ("an/(%EXP)2|VAL) = 1.
. The type and rank of the result are the type and _
rank of EXP. The number of the result is &/(%EXP)-|VAL.

30.3 exp ' val "ep exp $
o DOMAIN ERROR if VAL and EXP are not both type
numeric or both type character.
. The rank and number of the result are the rank and
number of VAL, The type of the result is bit.

30.4 exp val "ev exp $
. RANK ERROR unless both VAL and EXP are scalars or
%ectors, and, if both vectors, of the same length.
. DOMAIN ERROR unless both VAL and EXP are numeric.

. The result is a numeric scalar.

30.5 exp ‘ val "en exp §

. DOMAIN ERROR unless VAL and EXP are both of type
numeric. |

. RANK ERROR unless EXP is a scalar and VAL is a
scalar or a vector. »

. The rank and number of the result are the rank and
number of VAL, The type of the result is given in
the type chart.

30.6 exp val X exp $
. DOMAIN ERROR unless VAL is of type bit.
. RANK ERROR unless (+/VAL)=(%ExP)/1_7/.
. The type and rank of the result are the type and

31.

exp

b4 1V, U/ Page 14

rank of EXP. The number of the result is
(#EXP) +(+/1-vAL)&(#EXP) +(%EXP)/ 1/. Here, #EXP
means the number of EXP; i.e., #EXP = &/%EXP.

val dfn exp $§
VALUE ERROR if either VAL or EXP have null value
pointers,
If the usage bead pointed to by the DFN token has been
junked:
. Deallocate the junked usage bead.
. Search the symbol table for a new referent for

the function name,

. If not found, SYNTAX ERROR on the DFN token.

. If foﬁnd, but not a dyadic function anymore,
SYNTAX ERROR on DFN,

. Hook the DFN token to the new usage bead.

Spawn an F-~frame to the state stack, and hook it to
the function's usage bead.

Place the function arguments in the symbol table with
the proper values, and enter their usage pointers into
the frame's local name list.

If thé function allows a result, enter fhe local name
into the symbol table, and record its usage pointer
in the frame's local name list.

If the function has local variables, enter them

into the sumbol table, and record their usage pointers
in the frame's local variable list,

Scan the function's lexed lines for labels, enter them
into the symbol table with their values, and record
their usage pointers in the frame's local variable
list. ‘

Go to the top of the parse main loop.

When the function returns, place the result wvalue
pointer in the new EXP token.

If the value pointer is null then set the PRINT
switch OFF; otherwise, set it ON,

BZ2.10.07 Page 15

32. exp val X exp §

. DOMAIN ERROR unless VAL is of type bit,
o RANK ERROR unless VAL is a scalar or else a vector

of length (%EXP)/ 1_7.
e« The type and rank of the result are the type and
rank of EXP. The number of the result is

(#EXP)& (+/VAL)+ (#VAL).

33.1 exp val / exp §
. DOMAIN ERROR unless VAL is of type bit.
N RANK ERROR unless VAL is a scalar or else a vector
of length (%EXP)/ %%EXP_/.
. The type and rank of the result are the type and rank
of EXP. The number of the result is (#EXP)&(+/VAL)+(#VAL).

33.2 exp val \ exp $
. DOMAIN ERROR unless VAL is of type bit.
. RANK ERROR unless (+/VAL) is equal to (%EXP)/ %%EXP_/.
. The type and rank of the result are the type and
rank of EXP., The number of the result is

(#ExP) +(+/1-vAL) & (#EXP)= (%EXP) /[4%EXP /.

34, exp val "rr exp $
. RANK ERROR unless VAL is a scalar or else (%%VAL)=
($HEXP) -1 and (%BVAL)=%(~1"doEXP).
. DOMAIN ERROR unless VAL is numeric integer valued.
. The type, rank,and number are the type, rank, and
number of EXP,

35. exp val sop . sop §
36. exp val sop . lop §
37. exp ‘ val lop . sop $§
38. exp val lop . lop §
. The type of Vf.gE is the type of (VgE)f(VgE), from
the chart.

. LENGTH ERROR unless (%VAL)/ %%vAaL_/=(%exp)/ 1_/.

BZ,10.07 Page 16

. The rank of the result is the rank of VAL plus
the rank of EXP less two., .
+ The number of the result is (#VAL)&(#EXP)+($EXP)/ 1_J*2.

39. 'exp _ val "cc ., sop exp §

ko, exp val "cc . lop exp $

. The type of V'"cc.fE is the type of VfE, from the
chart,

. The rank of the result is the sum of the ranks of
the operands.
. The number of the result is the product of the ranks

of the operands,

41,1 exp val / [exp1_J exp2 §

. RANK ERROR unless EXP1 is a scalar,

. DOMAIN ERROR unless EXP1 is a numeric integer
O4EXP1-INDEX<(¥%EXP2), where INDEX is the index
origin, and VAL is of type bit.

. RANK ERROR unless VAL is a scalar or a vector of

 length (%ExP2)/ EXP1_7.

. The type and rank of the result are the type and
rank of EXP2,

.+ The number of the result is (#EXP2)&(+/VAL)+(#vAL).

k1,2 exp val\ [exP1_7 exp2 §

. DOMAIN ERROR unless EXP1 is a numeric integer
0 < EXP1~INDEX<(%%EXP2).

. RANK ERROR unless EXP1 is a scalar.

. DOMAIN ERROR unless VAL is of type bit.

. RANK ERRQR unless -(+/VAL) = (%EXP2)-/ EXP1_/.

. The type and rank of the result are the type and
rank of EXP2. The number of the result is
(#ExP2) +(+/1-VAL)& (#EXP2)+(%EXP2) / EXP1_/.

Lo, exp _ val "rr [féxp1_7 exp2 $
e DOMAIN ERROR unless EXP1 is a numeric integer
O EXP1-INDEX (%%EXP2).

L3,

Bl

exp

exp

BZ.10.07 Page 17

RANK ERROR unless EXP1 is a scalar, and VAL is a

scalar or else a vector of length %(EXP1 "do EXP2).
DOMAIN ERROR unless VAL is of type integer.

The type, rank, and number of the result are the type,
~ rank, and number of EXP2,

tilde exp $

DOMAIN ERROR unless EXP is of type bit.
The type, rank, and number of the result are the

type, rank, and number of EXP.

mfn exp §

VALUE ERROR if EXP has a null value pointer.
If the usage bead pointed to by the MFN token has

been junked:

[2

Deallocate the junked usage bead.

Search the symbol table for a new referent for
the function name,

If not found, SYNTAX ERROR on the MFN token,
If found, but not a dyadic function anymore,
SYNTAX ERROR on MFN,

Hook the MFN token to the new usage bead.

Spawn an F-frame to the state stack, and hook it to

the function's usage bead.

Place the function argument in the symbol table with

the proper value, and enter its usage pointer into

the frame's local name l1list.

If the function allows a result, enter the local name

into the symbol table, and record its usage pointer

in the frame's local name list.,

If the function has local variables, enter them into

the symbol table, and record their usage pointers

in the frame's local variable list.

Scan the function's lexed lines for labels, enter

them into the symbol table with their values, and

record their usage pointers in the frame's local

variable list,

Ls,

ke,
k7.1

hy,2

47.3

by, b

b7.5

BZ.10.07 Page 18

Go to the top of the parse main loop.
When the function returns, place the result value
pointer in the new EXP token.

If the value pointer is null then set the PRINT

- switch OFF; otherwise, set it ON,

exp

exp

exp

exp

exp

exp

"ib exp $
DOMATIN ERROR unless EXP is a numeric integer
19 L EXP< 27.
RANK ERROR unless EXP is a scalar.
The result is a numeric integer scalar, except for

EXP=27, which is a numeric integer vector.

sop exp §

? exp §
The rank and number of the result are the rank and
number of EXP, The type of the result is as given

in the chart.

% exp $
The type of the result is integer, the rank of the
result is 1, and the number of the result is the

rank of EXP.

, exp §
The type and number of the result are the type and
number of EXP, The rank of the result is 1.

$ exp $
DOMAIN ERROR unless EXP is a non-negative integer.
RANK ERROR unless EXP is a scalar.
The result is of type integer and rank 1. The

number of the result is the wvalue of EXP.

"tr exp $
RANK ERROR unless %%EXP is 1, 2, or 3.

47,6

L8,

Lo,

50.
51,

52.
53.

5h.
55.

exp

exp

exp

exp

exp

exp

exp

exp

exp

BZ.10.07 Page 19

The type, rank, and number of the result are the

type, rank, and number of EXP.

"rfJexp $

- The type, rank, and number of the result are the

type, rank, and number of EXP.

gop exp §
DOMAIN ERROR unless EXP is of numeric type.
The rank and number of the result are the rank and

number of EXP., The type of the result is integer.

"rr exp $
The type, rank, and number of the result are the
type, rank, and number of EXP.

sop / exp §
lop / exp ¢
The type of £/E is the same of the type as EfE,
in the chart. The rank of the result is one less
than the rank of EXP, The number of the result is

(#ExXP)=+(%EXP) /[9%EXP_/.

sop / [expl_/ exp2 §
lop / [exp1_/ exp2 §
DOMAIN ERROR unless EXP1 is a numeric integer
0 < EXP1-INDEX < ($%EXP2).
RANK ERROR unless EXP1 is a scalar.

The type of £// E1_/E2 is the same as the type of
(e2)r(E2), in the chart. The rank of the result

is one less than the rank of EXP2, and the number
of the result is (#BEXP2)+(%EXP2)/ EXP1_7/.

" sop £ exp §
lop £ exp §
The type of f/E is the same type as EfE, in the

chart., The rank of the result is one less than

BZ.10,07 Page 20

the rank of EXP. The number 6f the result is

(#exP)+(%EXP) [1_7.

56. exp gop [/ expl_J exp2 $
« ~ DOMAIN ERROR unless EXP1 is a numeric integer
0 £ EXP1-INDEX < (¥%EXP2).
. RANK ERROR unless EXP1 is a scalar.
. DOMAIN ERROR unless EXP2 is numeric.
. The type of the result is integer. The rank and

number of the result are the rank and number of EXP2.

57 exp “"rr Z~éxp1_7'exp2 $
o DOMAIN ERROR unless EXP1 is a numeric integer
0 £ EXP1-INDEX £ (%%EXP2).
. RANK ERROR unless EXP1 is a scalar.,
. The type, rank, and number of the result are the

type, rank, and number of EXP2,

58, list exp §
. A listvis created consisting of one value,
. Copy the "soure" pointer from the EXP token into
the LIST token in the event of a diagnostic later on,
. It is all right at this point for the expression to

have a null value pointer.

Request Processing

Request processing is almost self-evident. A user-oriented
description of what each request does is practically a flow-
chart for it. The discussions below mention some points which

might not be so obvious, or which involve interfaces with Multics.

)OFF

. The termination sequence for APL, as discussed in MSPM
BZ.10.01, is executed.

BZ.10,07 Page 21

)JCONTINUE

)QﬁIT

This request is mechanized as the sequence
)SAVE CONTINUE

)OFF

APL calls the command processor through the entry
point "cu_$cp". APL remains in the stack with the
"cleanup" condition enabled. If the stack is re-

leased, APL will terminate as in the OFF request.,

JCLEAR

*

)LOAD

Any old copies of "apl.symbol.,?", "apl.stack.?",
"apl.function.,?", and "apl.value.?" in the process
directory are truncated. '

Empty stack and symbol table are instated.

path

The pathname given must be the pathname of a segment
created with the APL SAVE request. Standard Multics
search rules are applied if an incomplete path name
is given.

The current workspace is cleared,

The saved workspace will consist of four areas. The
four areas are simply moved into the working symbol,
stack, function, and value segments. No relocation
is necessary, as all lists are maintained as offsets

relative to the beginnings of their respective areas.

JCOPY)PCOPY)GROUP JORIGIN)DIGITS

JWIDTH)WSID)FNS)VARS)GRPS

)GRP)st)sIv A

. The implementation of these requests is completely
straightforwvard.

)SAVE path

The four areas of the current workspace; namely, stack,

bB4.10,07 Page 22

symbol, function, and value; are written one after

the other as one segment. Standard Multics search
rules are applied if an incomplete pathname is supplied.
'As discussed under LOAD, no relocation of any pointers
is necessary to accomplish this., Only the portions of

the areas actually used will be written out,

)DROP path

o Mechanized as the Multics DELETE command.
)LIB

o Mechanized as the Multics LIST command.
)PORTS

o Mechanized as the Multics WHO command.

)JERASE object...

. Groups and variables can always be erased. When a
variable is erased, if its usage count in its usage bead
is non-zero, the usage bead is set to type Jjunk so that
the user of the variable will be notified that it has
been deleted,

. Functions cannot be erased if pendent. If a function is
found with a non-zero usage count, the state stack will
be searched to see if it is pendent. It it is pendent,
the function wll not be erased. If it is not pendent,

its usage bead will be set to junk, as discussed above,

)FO {path}

This request is processed differently depending upon whether

it is encountered as a normal input line or as an argument to

the APL command. As an argument to the APL command:

. If the normal output stream name is not "user_output",
the name is detached and then set to "user_output_.

. If the given path name is not null, a unique identifier

is placed in the normal output stream name, and then

BZ.10.07 Page 23

this name is attached to the segment.
The normal output stream name is placed in the current

output stream name,

As a normal input line:

.

If the diverted output stream name is not blank, it is
detached and set to blank,

If the given path name is null, thenormal output stream
name replaces the current output stream name, and exit.
Otherwise, a unique identifier is placed in the diverted
output stream name, and the name is attached to the given
segment.

The diverted output stream name feplaces the current

output stream name.

)FI {path}

)FIO

The sequence of operations performed for the FI request
are exactly the same as those for the FO request, above,

with the word "input" inserted in place of "output".

This request is treated as a combined FI and FO request.

No path name is permitted.

)FIA‘fpathS

The FIA switch is set and the pathname is remembered.

When the parser receives the next complete line from

the lexical analyzer, the following steps will be taken:
The FIA flag is reset,

If the diverted input stream name is not blank, it is
detached and then made blank. '

If the saved pathname is null, the normal input stream
name is placed in the current input stream name, and exit.
Otherwise, a unique identifier is placed in the diverted
input stream name, and the name is attached to the segment.
The diverted input stream name is placed in the current

stream name.

BZ.10.07 Page 24

)FIOA

. This request is treated as a combined FIA and FO request.
No path name is permitted.

)RO

This request is processed differently depending upon whether
it is encountered as a normal input line or as an argument to
the APL command., As an argument to the APL command:

. Exit immediately if the normal output stream name is
"user_output"”.

. Detach the normal output stream name.

. Set both the current and the normal output stream names
to "user_output".

As a normal input line:

. If the diverted output stream name is blank, replace
the current output stream name with the normal output
stream name and exit.

. If the current output stream name is "user_i/o", then
replace it with the diverted output stream name and exit.

. Otherwise, detach the diverted output stream name and
replace it with blank.

. Replace the current output stream name with the normal

output stream name,

)RI

. Read "input" for "output" everywhere in the above
description of the RO request.

YRIO

. The combination of an RI and an RO request.

JRIA

. The RIA switch is set. When the parser receives the

next complete line from the lexical analyzer, the
following steps will be taken:
. The RIA switch is reset.

BZ.10. 07 Page 25

. If the diverted input stream name is blank, replace
the current input stream name with the normal input
stream name and exit.
. If the current input stream name is "user_i/o", then
it is replaced by the diverted input stream name .and exit.
. | Otherwise, the diverted input stream name is detached and
replaced by blank.
. The current input stream name is replaced by the normal

input stream name.,

)RIOA

. The combination of an RTA and an RO request,

