A-14-A

L

GENERAL

DIAL COMMe®

DEPT.®

ADDRESSe®

SUBJECT®

g5 tiEcTRIC

8-264,-4207 ~ DATES MARCH 10, 1970 coriEse.
CISL/LSD
575 TECHNOLOGY SQ., CAMBRIDGE, MASS. 02139

PROPOSED MULTICS APL

. CLINGEN
. CORBATS

. DALEY

. FRE|BURGHOUSE

GINTELL
. GROCHOWV///
SALTZER

VAN VLECK

T0:

—CCCCDITO
TrIrE=r>00¢ -

. MILLS
SMITH

FROM:

[Pl w)

=z

The attached document describes an implementation of the APL
programming language proposed for Multics. [t is sent to you

for your ‘information and review., Please direct your crilicisms
and suggestions, preferably in writing, to J. D. Mills or

M. G. Smith by Wednesday, March 18, Shortly thereafter a revised
proposal will be distributed, incorporating any adopted alterations,

O Db G
"’;IJ!IQ;I”[{V/:/JZ;Q;L// /‘(/é’f%éwig J

¢ /
Y JAMES D. MILLS/MAXIM G. SMITH

/1

(enclosures)

PROPOSED MULTICS APL

A project has just started which will lead to an implementation of
APL in Multics. APL is a programming language, rich in operators
and matrix operations, originally developed by K, E. lverson.

The name comes from the initial letters of the title of his book,

A Programming Language (New York: Wiley, 1962), which documents an

early, pedagogical version of the language.

An implementation of APL, called APL\360, has become fairly popular
at MIT and elsewhere., |t is an interactive interpreter running on

remote-access |BM 360 computers,

Multics APL is planned to be a nearly exact duplicate of the
programming language portion of APL\360. Also, most of the APL\ 360
system commands and editing functions will be present in Multics APL,
though some will look different to the user. In addition, several
new functions unique to the Multics implementation will be added, to

allow APL users to take advantage of some of the power of Multics,

This document attempts to describe briefly what capabilities Multics
APL will provide, Inasmuch as our implementation is to be so similar
to APL\ 360, the most convenient way to specify Miltics APL is to list

. the differences between it and API\360. Hence, the reader is presumed
to be familiar with APL\360. A good introduction to APL\360 can be
found in APL\360 Primer, IBM form number GH20~-0689. This primer is

organized as follows:

Chapter 1 doesn't say anything;

Chapter 2 discusses dialing up and getting connected to
APL\ 360;

Chapters 3-5, 8-13, and 16-25 describe the programming
language itself’;

Chapters 7 and 8 explain-the editing provided to enter
and correct programs; and ,

Chapters 14, 15, and 26 discuss control and maintenance

functions.

‘,“ &
/K\‘\\.S \ \BOL

S

v

W

-2 -

A simple console session with APL\360 is included with this document
as Appendix A, This should give some of the flavor of the language.

1. The Programming Language

As stated above, Multics APL will retain the programming language
portion of APL\360 practically without change. Referencing the
primer cited above, this implies that chapters 3-5, 8-13, and 16-25
all will be accurately implemented in Multics APL with only these
two changes, dictated by the floating-point hardware of the GE 645:

a. The largest and smallest numbers which can be handled by
Multics APL will be app}oxima{ely 1e38 and 1e-38, respectively,
instead of 1e75 and 1e-75 for APL\360.

b. Multics APL will retain approximately 19 decimal digits of
precision, as opposed to 16 for APL\360,

2. Editing

The editing of APL\ 360 cannot be duplicated exactly under Multics as
it is today. This is because AP\ 360 editing relies on the use of

- the quit signal to edit a line, while Multics discards any partial

=

yinput line when quit is detected. In addition, it is felt that APL\360
eaT¥T;§_Tg—EG;bersome at best, so that something better is in order
anyway. Hence, Multics APL will provide two editing modes, Multics
mode and APL\ 360 mode. APL\ 360 mode will be as much like APL\ 360
editing as is possible without using the quit signal. [t is provided
to make it easier for persons familiar with APL\360 to change over to
Multics APL with a minimum of hurdles. Multics editing mode will be
practically identical to EDM. Most users will no doubt switch to this

mode as soon as they discover how superior it is to APL\360 mode.

..3_

Chapters 7 and 8 of the primer describe the AP\ 360 mode of editing
in Multics APL with the following changes:

The quit signal (referred to as the attention button in the
primer, as it is oriented toward |BW terminals) will not be
used for line editing. Instead, erase, kill, and escape

characters will be defined for the APL character set which will

function like the corresponding Multics characters.

Deletion of lines from stored files will not use the quit signal
either. Lines will be deleted by replacing them with null lines,
(null lines are illegal in APL).

The Multics mode of editing will be added. It does not exist at all
in APL\360.

Ce

There will be a system command, ")EDIT", and a built-in function,
"JEDIT", to select the editing mode. Initially upon invoking
APL, the systemwill be in APL\360 mode. To change to Multics
mode, the user will issue the system command ")EDIT MULTICS" where
"MULTICS" is any word beginning with "M" or execute the built-in
function "JEDIT 'MULTICS', where MUMULTICS! ™ is any expression
having the value of a character array with the initial letter

T, The mode can be chahged back via ")EDIT APL" or "IEDIT VAPLM,
where again only the "A" is significant, The system will respond
"WAS MULTICS" or "WAS APL" to the system command, and will return
the character vector "'MULTICS'" or "'APL'" as the value of the

built =in function.

Definition mode is entered and left with the nabla character,
whether APE\360 or Multics editing is in effect. When definition
mode is entered with Multics‘eaiting, the system will respond
"INPUT" or "EDIT", accordingly as the program mentioned by the

user does not or does exist. The user may switch from input to

(Continued)

edit and vice-versa by typing a line consisting of only a period.

A nabla typed anywhere except between quotes terminates definition
mode; i.e., exits from the editor; whether typed during input or
edit. The program itself, rather than a temporary copy of it,

will be edited as requests are typed, so there is no need to "write"
it out, as in EDW. |

The editing requests will be those of EDM, except that there will
be no quit request and the write requests will always require a
segment name. An APL source program will not be stored as a
separate segment by the APL interpreter, so there is no default
segment name which could be applied on write requests, Note

that the APL program itself is edited as requests are issued,

s0 there is no need to issue write requests unless one desires

a copy of his program as an independent segment.

In Multics editing mode, there will be no hypothetical null line
in front of the program. The first line of the program will be
its header line, which can be edited as any other line. It is
considered to have line number zero. Successive lines have
numbers one, two, ... unless some editing has been done, in

which case there may be missing or fractional line numbers.

When the nabla is typed to exit from definition mode, the header
line will be checked for validity, all null lines will be removed,
and the lines will be renumbered sequentially by one's.

Note: the line numbers are not apparent when editing unless the

"=1" {5 used.

3. Character Set

The APL character set (see Appendix B) is far removed from the

Multics standard. In fact, it contains more than 128 distinct
characters so there is no hope of establishing a one-to-one mapping
onto the Multics set. Hence, Multics APL will have its own eight-
bit~in-a-nine-bit-field character set. This set will be identical

to the Multics set where the graphics overlap or can by some stretch

of the imagination be made to correspond (which will be about 87 cases),

but will be arbitrary elsewhere.

Another consequence of this is that it will be convenient to use
Multics APL only from a terminal equipped with APL graphics.

Terminals with conventional Multics graphics will be usable in an
emergency, but the user will have to pay the price of occasional
escapes or far-fetched correspondences. The only terminals which can
presently be equipped with APL graphics are IBM 1050's, 2740's and
27,1's. However, rumors are about that General Electric may supply an
APL belt for the Terminet 300, and that Teletype may supply APL pallets
for the model 37. The pallet-box of a model 37 Teletype is fairly
easy to change--a less than one minute operation; the change of belt

in a Terminet is definitely not a do-it-yourself job.

The converse operation, using Multics from a terminal equipped with
APL graphics, will not be difficult. Multics is less demanding of its
character set, and almost all Multics activity occurs within the

87-member common subset of characters.
Consequently, users will observe the following points:

a. Multics APL will install its own DIM (or else a table to drive the
“standard DIM if it is flexible enough) when invoked. The DIM
for IBVM terminals will assume that the user has an APL typing
element; the DIM for other terminals will assume that they have

Multics graphics. IBM terminal users can use Multics APL as if it

(Continued)

were AEL\360. Other terminal users will necessarily resort

to escape sequences more or less often,

There are occasions when, within APL (i.e., throughthe APL DIM),

one would like to type lines to Multics (example: the execute reguest
of EDM). To do this, the user will have to be aware of the
correspondence between APL characters and Multics characters.

As noted above, this will not be difficult. The 26 unshifted
alphabetic characters of APL will be mapped by the DIM into the
Multics lower-case alphabetics. The 26 alphabetics underscored °

of APL will be mapped into the upper-case alphabetics. The
correspondences for the numerics and the 23 special characters
common to APL and Multics are obvious. Other arbitrary

correspondences will be adopted for the remaining 10 Multics graphics.

Inasmuch as the internal codes used to represent most APL characters
within Multics will correspond to the Multics standard codes, the

collating sequence of characters in Multics APL will differ from
that of APL\ 360,

Entering and Leaving APL

APL\360 is a stand-alone system, but Multics APL will be implemented as
a command (hence also as a subroutine) on Multics. = Therefore, Chapter 2
of the APL\360 primer does not apply to Multics APL.

Multics APL will be entered by issuing the command "apl",

Possible argumenté to the command may include options for obtaining
input lines from a segment instead of the console, writing output
to a segment instead of the console, and loading a particular

workspace initially. .

Ce.

(Continued)

A workspace will be a segment., Any place that the APL syntax
requires a workspace name, the Multics APL user will be able

to specify a path-name. Normal Multics access and search rules

~will be applicable. The Multics file-system will take the

place of APL\360 "librariesﬁ.

When APL attains control, it will type "APL" and indent six
characters (unless either input or output is from or to a segment),
and a clear workspace will be in effect (unless the initial work-

space argument was specified), in execution mode.

APL will establish its own quit handler as soon as it is invoked
(this is so that it can give high-level response and debugging
aid to looping programs, and so that it can properly reset the DIM
before exiting back to Multics). Any time the user presses the
quit button, APL will regain control, type "APL" on the console,
and read the console for input. This implies that, under APL,
the quit button cannot be used to return to Multics command level.
The only way to cause APL to return is to issue a quit system

request, ")Q" or ")QQ", or to execute a quit built-in function,

IIIQII or "IQQ”.

If APL has been invoked recursively so that several instances of
the interpreter are in execution, the quit signal will be accepted
by the most recent invocation. To return control to a previous
;nvocation (and hence discard the suspended states of more recent
invocations in the process), the user may issue the quit request
")Q" as many times as necessary. The request ")QQ" will return
directly to Multics command level, across any number of invocations
of APL. The built-in functions "JQ" and "IQQ" behave corres-
pondingly.

< 1
\F\J\ﬂ oA

€. .

5.

-8 -

The APL interpreter will be callable recursively from within

APL in a number of ways. One way is via the "IAPL" built-in
function. Execution of "z<-IAPL x", where "x" is any expression
having the value of a character array, will cause APL to interpret
the input lines read from "x" (in row-major order, NL characters
must be in "x" in the proper places, rank and dimensions are

ignored), and place the output in the character vector "z",

System .Commands

Control and maintenance requests issued to the APL\360 system are called

"system commands" in the primer. Chapters 14, 15, and 26 of the primer

will apply to Multics APL as amended by these points:

Ce

The error messages which Multics APL will emit are completely
undesigned. It is unknown how much they will or will not

resemble APL\360 error messages.

Entering and leaving APL will be done as discussed in section 4,
above.

Saved workspaces will be segments in the user's working directory.
The ")LIB" system command will be implemented with Multics "list".
"Libraries" will not exist in Multics APL; standard Multics path-
names, access rules, and search rules will apply to accessing

workspaces.

The system commands to communicate with the computer operator will

not be implemented.

The notion of a "protected" function will not be available in
Multics APL.

(Continued)

The system command ")E x" will be added. The text "x" will be
passed to Multics as a command line to be executed.
A corresponding built=in function "IE x" will accept any expression

"x" having the value of a character array.

The "TAPL"™ built-in function will be provided as discussed in

point 4.e, above. Note that the APL interpreter can also be

called recursively using: the ")E" system command; the "IE" built-in
function; the "E" request when in Multics definition mode; or

when called by any program entered by any of the above ways

(including the shell's command-level entry!).

The "IRSEG" and "IWSEG" built-in functions will be added to permit
APL programs to read and write segments. Execution of "z <~ IRSEG x"

where the value of "x" is a path-name, causes the entire segment of

that name to become the value of the character vector "z",

successive characters of the segment being assigned to successive
elements of "z", If the segment "x" cannot be found, a diagnostic
occurs. In addition, the "TRSEG" function can accept a left |
operand: execution of "z <~ y TRSEG x", where the value of "y" is a

vector of integers, causes the line numbers mentioned in "y" to be

n

read from segment "x" into "z". This assumes that NL characters

will be found in "x"; if none are, "x" consists of only one line.

Any lines not found contribute no input to "z".

Note the difference in operation of "IRSEG" with no left operand

as opposed to a null left operand: "z <- IRSEG x" reads the entire

segment; "z <- 10 IRSEG x" reads nothing ("z" will be null).

MGS/1
3/9/70

- 10 -
(Continued)

Execution of "x IWSEG y", where the values of "x" and "y" are

character arrays, writes the characters in "y" out as a segment

named "x". The letters "R, "E", "W" and "A" in any combination

may follow the name in "x" after a blank, and the segment will be given

that mode after creation (otherwise, RWA mode will be assigned).

Note: Another way to read and write segments from within APL is

to use the "|", "W", and "W" editing requests.

The "I19" built=in function of AP\ 360 (cumulative keyboard-
unlocked time) will not be implemented, aS“EbEEELjELIELﬂgy to obtain
this information under Multics. ‘ : X .
=

A 5/\"? Y(L@A/U"Q‘*&/ v
A

11776
010)

12

12

s

CATS

10

18

16

24

19.32.36 07/03/68

APL\N 360

X+Y
144F72

P<~1 2 3 4
PxP

9 16

PxY

40 T15 20

Qe'CATS!
Q

YZ+5
¥Z1+5
YZ+¥Z1

3+4x5+6
\

+5+6
X<3
Y<u
(XxY)+u

XxY+Y4

Appendix A

SAMPLE TERMINAL SESSION

JANET

FUNDAMENTALS
Entry automatically indented
Response not indented
X is assigned value of
the expression
Value of X typed out
Negative sign for negative
constants

Exponential form of constant

Four-element vector
Functions apply element by element

Scalar applies to all elements

Character constant (4-element
vector)

Multi—character'names

Correction by backspace
and linefeed

Executed fromvright to left

R

VA

20

12

24

y

1

30

3°

0.

0‘

0.

1Q

00

1

1.
0

0.

XY
SYNTAX ERROR
XY
A
XY :
LUE ERROR
XY
A
4x3[5.1
it
(4x3)[5.1
Ux[5,1
X<15.,
X
2 3 L 5
10
Y<«5-X%
Y
3 2 1 0
X[y
3 3 4 5
X<y
1 0 0 0
o1
141592654
01 2
141592654 1.570796327
X<u5 990
0X:180)
7853981634 1.570796327
" 101
8418709848
201 2
5403023059 ~0.4161468365
301
557407725
“301
7853981634
3073017
2 3 4 5 6 7
Y«1. 2 :
4oy
414213562 2,236067977
0o+Y
0.8660254038
701 2
761594156 0.9640275801
“70701 2
2

1

Entry of invalid expression

Shows type of error committed

Retypes invalid statement witlh
caret where execution stoppegd

Multi-character name (not Xxy)

XY had not been assigned a value

SCALAR FUNCTIONS

Dyadic maximum

Monadic ceiling
Index generator function
Empty vector

prints as a blank line

All scalar functions extend
to vectors

Relations produce
logical (0 1) results
Pix1 '

Pisz1 2

Conversion éf X to radians
Sin 1

Cos 1 2

Tan 1

Arctan 1

Tan Arctan 1 2 3 4 5 6 7

(14Y*2)*,.5
(1-27%2)%.5
Tanh 1 2

Arctanh Tanh 1 2

VALUE

[1]
[2]
[3]
[57.
[5]
[6]
[7]

6

120

FAC[3]
FAC(5]
FAcC[3]
FACL 5]
FAC[3]
FAC[5]
FACL 3]

Vi«X F Y

Z<((X*%2)+Yx2)*,5

v
3 F 4

P<«7
@« (P+1)F P-1
Q

4x3 F 4

VB<«G A
B<(4>0)-A<0
v

G u

G 6

X<"6
G X

VH 4
P+«(A>0)-A<0
v

H76

P

Y<H 6
ERROR
Y«H T8

A
VZ<FAC N;I
72+1
I<0
Lli:I<«I+1
>0x1I>N
AN A NS
»>L1
v
FAC 3

FAC 5
TAFAC+3 5

X<~FAC 3
1

1
2
2
3
6
y
A

TAFAC+0

DEFINED FUNCTIONS

Header (2 args and result)
Function body

Close of definition

Execution of dyadic function F

Use of F with expressions
as arguments

G is the signum function
A and B are local variables

Like G but has no explicit result
P is a global variable

H has no explicit result
and hence produces a value
error when used to right
of assignment

FAC is the factorial function

s

Ll becomes 3 at close of def
Branch to O (out) or to next

Branch to L1 (that is, 3)

Set trace on lines 3 and 5 of FAC

Trace of FAC

Reset trace control

A.3

W e, s ~ergre -

RN EWN -
{ SRS WS N G A WYy W

L umse B anmet BN st B s B moue M §
DU F WOWN R
[T Y R |

(71

VG<M GCD N

G<N
M<M|N
>UxM=z0
[1]1G«M
fulv<G
(1037
G+M
(ol
G<«M GCD N
G+M
M<M|N
>UxM=zQ
N+G

»>1
v
36 GCD 4u

VGCD
(4.11M, N
ol

G<M GCD N
G+M

M<M|N
>UxM=z0
N<G

M,V

-1

v

- 36 GCD u4u

véepLOdlv
G<M GCD N
G<M

M<M | N
>UxM=z0
N<G

M,N

->1

VGCD
(5]

A
v

MECHANICS OF
FUNCTION DEFINITION

Greatest common divisor
function based on the
Euclidean algorithm

Correction of line 1
Resume with line 4
Display line 1

Display entire GCD Furiction

Close of display, not close of def
Enter line 5

Close of definition

Use of GCD

4 is GCD of 36 and 44

Reopen def (Use V and name only)
Insert between 4 and 5

Display entire function

Fraction stays until close of def

End of display
Close of definition

- Iterations printed by

line 5 (was line 4.1)
Final result
Reopen, display, and close GCD

Line numbers have been
reassigned as integers
Close (Even number of V's in all)
Reopen definition of GCD
Delete line 5 by linefeed

Close definition

T e vrermosrons

VZ<ABC X
(1] Z<+(33%xQ+(Rx5)-6

[2] {1091
[1] Z<(33xQ+(F%x5)-6
/1 /1
[1] Z«(3%xQ)+(Tx5)-6
(2] v
FAC 5
120
YERASE FAC
FAC 5
SYNTAX ERROR
FAC 5
A
VZ<«BIN N

1] LA:7«(Z,0)+0,2
[2] >LAXN2p 2V
B1N 3
VALUE ERROR
BIN[L1]) LA:2<(Z2,0)+0,2
A
Z<1
1
1 3 3 1
BIN 4
VALUE ERROR
BIN[C1]) L1:2+«(Z2,0)+0,2
A
VBIN[.1]2<«1V

)ST
BIN[1] =
>1
1 4 6 4 1
VBIN[OI1V
.- V.Z«BIN N
[1] Z+1

(2] LA:2<(Z2,0)+0,2
£3] >LAxN2pZ
v
SABIN<«2
Q@«BIN 3

BIN[2]

Z
1

»>2

BIN[2]
2

BIN[2]
+0

A function to show line editing
A line to be corrected
Initiate edit of line 1
Types line, stops ball under 9
Slash deletes, digit inserts spaces
Ball stops at first new
space. Then enter) T
FAC still defined

Erase function FAC
Function FAC no longer exists

An (erroneous) function for
binomial coefficients

Suspended execution

Assign value to Z
Resume execution
Binomial coefficients of order 3

Same error (local variable %
does not retain its value)

Insert line to initialize %
Display state indicator

Suspended on line 1 of. BIN

Resume execution (BIN now correct)

Display revised function
and close definition

Set stop on line 2
Execute BIN

Stop due to stop control
Display current value of Z

Resume execution

Stop again on next iteration
Resume

Stop again
Branch to 0 (terminate)

A.5

s

VMULTDRILL N:Y;X

1] Y«2n
2] Y
3] X<0

Ly »>0x1X=1'9"
5] »>1X=x/Y

£6] '"WRONG, TRY AGAIN!
£71] +3V
MULTDRILL 12 12
2 10
BH
37
WRONG, TRY AGAIN
{J:
20
B 7
BE
'Sl
VZ<ENTERTEXT
L1211 AR
[[2] D<pZ
131 Z<2,M
[u] >2xDzp 7
[5] v .
Q«ENTERTEXT
THIS IS5 ALL
CHARACTER INPUT
Q
MHIS IS ALL CHARACTER INPUT
N<5

YNOTE: 1';N;' IS ';\N

NOTE:15 IS 1 2 3 4 5

P«<2 3 5 7
pP

T«'OH MY'!
p.T

P,P ’
2 3 &6 7 2 3 5 7
r,T
OH MYOH MY
r,p
DOMAIN ERROR
r,pP
A

INPUT AND OUTPUT

A multiplication drill

pN random integers

Print the random factors

Keyboard input

Stop if entry is the letter S
Repeat if entry is correct product
Prints if preceding branch fails
Branch to 3 for retry

Drill for pairs in range 1 to 12

Indicates that keyboard entry
is awaited

Entry of letter S stops drill

Example of character () input

Make Z an empty vector

D is the length of Z

Append character keyboard entry

Branch to 2 if length increased
(i.e., entry was not empty)

Keyboard

entries
Empty input to terminate
Display Q

Mixed output statement

" RECTANGULAR ARRAYS

Dimension of P

Character vector

Catenation

Characters cannot be catenated
with numbers

M«2 3p2 3 5 7 11 13 Reshape to produce a 2x3 matrix
M Display of an array of rank »>1
is preceded by a blank line

2 3 5
7 11 13
2 L4pT A 2x4 matrix of characters
OH M
YOH
6pM A matrix reshaped to a vector
2 3 5 7 11 13
M _ Elements in row-major order
2 3 5 7 11 13
P, M
PL3] Indexing (third element of P)
5 : :
. P[1 3 5] A vector index
2 5 11
P[13] The first three elements of P
2 3 5 '
P[pP] Last element of P
13 }
M[1;2] Element in row 1, column 2 of M
3
M[1;] Row 1 of M
2 3 5
: ML1 1;3 2] Rows 1 and 1, columns 3 2
5 3
5 3
A<'ABCDEFGHIJKLMNOPQ' The alphabet to Q
ALM] A matrix index produces
. a matrix result
BCE
GKM
ACM[1 1;3 213
EC
EC
M[{1;3+15 3 12 Respecifying the first row of M
M)
15 3 12
7 11 13

R s —

I N

Q<3 1 5 2 4 6
PLQ]

11 3 7 13
Qle]

4 1 2 6
pPL3]

YORIGIN O
P[3]

PLO 1 2]
5

15

2 3 4

YORIGIN 1

15
3 4 5

A permutation vector
Permutation of P

A new permutation
Present index origin is 1

Set index origin to 0

First three elements of P

Result of index generator
begins at origin

FUNCTIONS ON ARRAYS
Vector of 3 random integers (1-9)

Random 3 by 3 matrix
Random 3 by 3 matrix

Sum (element-by-element)

S

MIN

7 9 L
5 8 6
9 8 7
M<N
0 0O
0 01
110
+/V
10
. x/V
14
+/011M
13 22 12
+/021M
20 14 13
+/M
20 14 13
’ [/M
9 8 7
X<1,5
+/(1 20X) %2
1
o/1 2,X
0.07067822453
' Y<«o/0 2,X
Y
0.9974949866
Y=10X
1
M+.xN

79 123 81
4o 84 58
84 95 66

M+, <N

1 1 1

1 1 1

2 3 2
M+,xV

51 25 586

Maximum

Comparison

Sum-reduction of V

- Product-reduction

Sum over first coordinate of M
(down columns)

Sum over second coordinate of M
(over rows)

Sum over last coordinate

Maximum over last coordinate

Sin squared plus Cos squared
Sin Cos X

(1-(cos X)*Q)*QS

An identity

Ordinary matrix (+,x inner)
product

An inner product

+.x inner product with vector
right argument

Y

49
35

[{e]

{e}

Y

2

63
56
35

@+?10p5

@
3

+/011Qo0.

1

28

49

n

m

18M

[8)]

5

1

Outer product (times)

Outer product

An outer product of rank 3

A blank line between planes

MIXED FUNCTIONS

A random 10 element vector
(range 1 to 5)

Ith element of result is number
of occurences of the
value I in Q

Ordinary transpose of ¥

Ordinary transpose of M (monadic)

.10

g+2 3 4p124 An array of rank 3

()]
[*2]
~3
e o]

13 14 15 16
17 18 19 20
21 22 23 24

3 1 297 Transpose of T (dimension
of result is 3 4 2)
1 13 ,
2 14
3 15
4 16
5 17
6 18
7 19
8 20
9 21
10 22
11 23
12 24
1 18M Diagonal of M
7 8 7 ‘ .
1 1 28T Diagonal section in first

two coordinates of T
i 2 3 i
17 18 19 20
X<«0(0,15)%6

JDIGITS 4 Set number of output digits to 4
WAS 10 ,
®§1 2 30,0X
0.000E0 1,000F0 0.000F£0 Table of sines, cosines,and
5.000F 1 8.660F 1 5.774E 1 tangents in intervals
8.660F 1 5.000F 1 1.732E0 of 30 degrees
© 1.000E0 1.744F 16 5,734E15

 8.660E 1 ~5,000E 1 T1.732EO0
5.000E°1 ~8,660F 1 ~5.774E"1

A.1ll

[S4]

(o]

e ¢}

U

(8]

[N

2 1 4 3
0 1 2¢6[11M

3oM

.12

‘Rotate to left by 3 places

Rotate to right by 3 places

Rotate columns by
different amounts

Rotation of roWs all
by 2 to right

Rotation of rows

Reversal of Q

Reversal of M along
first coordinate

z

Reversal along last coordinate

A

1776

1022

3805

22

7
5
1

B

¢

0
0
0

U<@>nu

U

0 0 1
U/@

(~U)/Q
3 4 oy

+/U/Q

10 1/L11M

L
7
10 1/M

(,M>5)/,

8 7

V<1 0 1 0 1

V\13
2 0 3
V\M

g 0
8 O
5 0
V\N'TABC!

M

y
1
7

0

2

1001 7 7 6

gL1 7 7

(4p10)T1776

7 ©

(3p10)T1776

6

6

10 1071776

1071776

24 60 6011

24 60 6073805

25

211 01 10

~

)

25

.13

Compression of Q by logical
vector U
Compression by not U

Compression along first
coordinate of M

Compression along last
coordinate

,Mis 794581157
All elements of M which exceed 5

Expansion of iota 3

Expansion of rows of M

Expansion of literal vector
inserts spaces
Base 10 value of vector 1 7 7 6

Base 8 value of 1 7 7 6

4 digit base 10 representation
of number 1776

3 digit base 10 representation
of 1776

Mixed base value of 1 3 25
(time radix)

Representation of number 3805
in time radix

Base 2 value

(5]

WAS 1

ABCDEFGHIJKLMNOPQRSTUVWXYZ

3

3 1
ALJ]
CAT

9

8
5

M

y

1

7
JORIGIN 0

M[2;0]
(,M)[(pM)12,0]
JORIGIN 1

P

5 7 11 13
P17

P16

P14 5 6 7

7 4

Q<S5 1 3 2 4
R«Q110@

R

3 5 1
QLR]

3 4 5

A«'ABCDEFGHIJKLMNOPQ'
,A<A,'RSTUVWXYZ'

A
Ar'C!
J<AV'CAT!

J
20

.14

Indexing of matrix in 0O-origin.
Note relation to indexing of
ravel of M

Restore l-origin

Index of 7 in vector P

7 is 4th element of P

6 does not occur in P, hence
result is 1+pP

A permutation vector
R is the permutation inverse to Q

A is the alphabet

Rank of letter C in alphabet is 3

M<«3 5p'THREESHORTWORDS'
M

THREE
SHORT
WORDS
JALM
J
20 8 18 5 5
18 8 15 18 20
23 15 18 L 19

AlJ]
THREE
_ SHORT
WORDS
3?5
5 1 2
625
DOMAIN ERROR
675
A
X<878
X
4 6 7 2 5 1 8 3
AX
&6 4 8 1 5 2 3 7
X[Ax1]
1 2 3 4 5 6 7 8
X(vx]

8 7 6 5 L 3 2 1
: U«Ae'NOW IS THE TIME!

'01'[14U]

00001001100011100011001000
UsA

FHIMNOSTW
(18)e3 7 5

0 0 1 0 1 0 1 0

A matrix of characters

Ranking of M produces a matrix

Indexing by a matrix produces
a matrix

Random choice of 3 out of 5
without replacement

A random permutation vector

Grading of X
Arrange in ascending order
Arrange in descending order

Membership

Appendix B

The AL graphic character set consists of:

26 alphabetics

A B ¢ D F F G H I J
XK L M N O P @@ R § T
u v W X Y Z
26 alphabetics underscored (overstrikes)
A B ¢ D E E G H L d
K L ¥ U4 0 B & R 5§ I
u v ¥ X X 2 ,
10 numerics
0 1 2 3 L 5 6 7 8 g

18 special characters common to Multics, 37ttys, and
963 2741s

< = > - + 7 =x t(

) N S R 4

blank

4 special characters coimmon to Multics and 37ttys,
but not 963 2741s :
~ [1 A\

25 special characters not in Multics
T < oz # ¥V A+ X € op
+ ¥ 1 o > <« T | \ A
o O n 1+ T

6 special characters not in Multics, but appearing
only as data in AL

o . 0 (= 2 U
16 overstrike combinations

¥ & © { B e
v &4 a 0O 1 X

131 graphic characters (ilL, BS, HT not included)

