MSPM SECTION BZ.10.00

ldentification
The Multics APL Interpreter--Overview

" Purpose N

This document is a description of the internal operation and
method of implementation of the Multics APL interpreter. It is
intended to be sufficiently detailed to be adequate background
for any system programmer desiring to maintain or modify the
interpreter. As a prerequisite to understanding this section,
the reader must be acquainted with the APL language (references
1 and 2) and with the usage of the APL command in the Multics

environment (references 3 and 4).

References _ ‘
1. 1.B.M. Corporation: APL/360 Primer. File number GH20-0689-1; 1969.

‘2. Falkoff, A. D.j lverson, K. E.: APL/360 User's Manual. |.B.M.
Corporation; August, 1968.

3. MPM Section 2.

4. MSPM Section 2.

Notatjon

Since the APL character set differs so markedly from ANSCII, there
is some difficulty expressing APL source code in this documentation.
This document uses the same escapes which apply to Model 37 Teletype
users talking to APL on Multics. See MPM Section or
MSPM Section BZ.10.04.

Interpreter Structure

The interpreter itself consists of a single bound segment. It is
purely recursive so that it can be invoked from within itself. The
~interpreter requires for its operation several working segments,
named "apl.symbol.?", "apl.value.?", "apl.function.?",

and "apl.stack.?" Here, "2" represents a unique
identifier created by each invocation of the interpreter. These
segments are created in the user's process directory. vThey are

used to hold the current workspace.

Hae 1V e VU l'age P4

Segment "apl.symbol.?" holds the symbol table for the current

workspace; segment "apl.value.?" holds all data values; segment
"apl.function.?" holds all function definitions; "apl.stack.?"
holds the APL state-indicator stack.(é:gi

. When the current workspace is saved, the information
from "apl.symbol.?", "apl.value.?", "apl.function.?", and "apl.
stack.?" is compacted into one segment, so that a stored workspace
is a single segment. Conversely, upon loading or copying from a
saved workspace, the symbol definitions, data values, function

definitions, and stack are routed to their proper working segments.

The ma jor components of the interpreter are the parser, the lexical
analyzer, the operator routines, and the editor. The principal .
component is the parser, which dispétches control to other components
as required. The central operation loop of the parser consists of
feading an input line, parsing it, calling upon other modules to
perform the actions implied by the line simultaneously with doing

the parse, and finally coming back to read the next line.

The input lines presented to the parser are lexically analyzed by

the lexical analyzer. |Input lines read during immediate-execution
mode (i.e., read from the console, unless the input stream has been
diverted) are lexed immediately after read-in and before presentation
to the parser. Function lines are kept as text until definition mode
is left, then the entire function is lexed at once; during execution

of a function, the parser draws from the stored lexed lines.

The operator routines are called upon by the parser to perform most
APL operations. The operations are performed during the parse;
by the time a statement is completely parsed, it has been completely

interpreted.

The editor is given control when the user enters definition mode.
The editor treats a function as purely a source string, until the
user requests exit from definition mode. At that time, the function
header is checked for validity, names are checked for duplication,
and all the lines of the function are lexically analyzed. Both the

source and the lexed versions are saved in the current workspace.

The source is used for future editing (whenever the source changes,

BZ.10.00

the old lexed version is thrown away) and for printing of error
messages. The lexed version is used as input to the parser when

the function is executed.

.Documentation Organization

This is the arrangement of the various topics covered by
the MSPM APL interpreter sections.

BZ,10,00 The Multics APL Interpreter--Overview
Purpose
References
Notation
Interpreter Structure

Documentation Organization

BZ.10.01 APL Parser
Purfose
Operation-~Initialization
I/O Stream Switching
Ogeration--Termination
State Indicator Stack
Operation~-Main Loop 7 7
Implementation of Reductions Analyzer

Interrupt Processing

BZ.10.02 APL Formal Syntax and Reductions
- Purpose
Tokens
Basics
Categories
BNF
Reductions Analysis Scheme
Reduction Rules
Type Codes

Page 3

Ddi e LVe WV rage -°r

BZ.10,03 APL Lexical Analyzer
Purpose
Entry Points
~ Operation
Name and Operator Handling
Constant Handling
All Other Characters

BZ.10,04 = APL Character Conversion
Purpose
Terminals
Editing Characters
- Other Escapes
Special Functions
Device Tables

BZ.10.05 APL Data Formats
Purpose
Introduction
The Stack Segment
The Value Segment
The Symbol Segment
The Function Segment

BZ.10.06 APL Editor
Purpose
Introduction
Initiation of Edit Mode
Insertion and Deletion of Lines
- Termination of Edit Mode

Reading and Writing Multics Files

BZ2.10.07 APL Operators and Requests
Purpose '
Environment

Operator Actions

Request Processing

