62.1001 rage

MSPM SECTION BZ.10.01

Identification
APL Parser

. Purpose

The Parser is the main control program of the Multics APL interpreter.
The parser reads the input lines typed by the user, calls for them to
be lexically analyzed, 'parses them, interprets them, prints results,
and returns to read again. Special input lines; i.e., system requests
beginning with ")" and definition mode entry beginning with nabla; are

detected and properly routed.

Operation--Initializatjion

Operation of APL begins with initialization coding performed once per
invocation of APL at the entrance to the parser. This consists of:
. setting the current and normal i/o streams to "user_input"

and "user_output"; setting the diverted i/o streams to null.

. turning of f the interrupt handling flags:
. inh: set when-interrupts are to be inhibited (critical

variables are being manipulated).

. intpend: set when interrupt occurs when inhibited;
interrupt. will be signalled again when inhibit is
vturhed of f.

. alm: set when interrupt has occurred, the i/o buffers have
been reset, further output is suppressed, and the
alarm clock is set for o.5-sec real-time signal;
operation continues, hoping for a beginning-of-line
to be reached by the interpreter (clean stop),
otherwise the alarm will produce a dirty stop (and

wipe the state indicator back to the previous suspension).. --

. almpend: set when alarm went off when inhibited; it will

be re-signalled when inhibit is turned off.

a unigue identifier is created to suffix all working segments

required by this invocation of APL.

BZ,10.01 Page 2

. a clear work space is created; this consists of creating in the
user's.process directory the segments "apl.stack.?", "apl.symbol.?",
"apl.function.?", and "apl.value.?"; the symbol, function, and
‘'value areas will contain no entries, the stack will start with
one console suspension frame (S-frame, see discussion of state-

stack below).

. a loop is entered to process each command argument to the APL
invocation; arguments are APL system requests, and they are
processed the same as such requests read from the input stream,
with the following exceptions:

. any errors detected before all arguments have been pro-
cessed are reported on "user_i/o", and the APL command
terminates. .

. the i/o stream switching requests which waild normally
establish diverted i/o streams instead affect the normal
i/o streams when given as command arguments (see the

discussion of i/o stream switching later on).

. a handler is established for the "program interrupt" condition;
the handler is responsible for manipulating the interrupt

switches as discussed above.
. "APL" is typed on the current input stream.

. the parser enters its main loop, to listen for user lines.

| /0 Stream Switching
Three pairs of i/o0 streams are meaningful to the APL interpreter.

They are known as the normal i/o streams, the diverted i/o streams,
and the current i/o streams. The current i/o streams are the ones
actually used by the interpreter to do its input/output. At any
moment, the current i/o streams will be synonymous with either the

normal streams, the diverted streams, or "user_i/o".

At the time APL is invoked, normal i/o streams are established, and

the current streams are synonymous with them. The normal i/o streams
will be attached to "user_input" and "user_output”, unless the stream-
diverting requests (")FI", ")FO", etc.) are read as command arguments,
in which case they will be attached to the indicated files. The attach-

ment of the normal streams will then remain unchanged for the duration

BZ.10.01

of the APL invocatioh.

While APL is running, detection of a stream-diverting request will
establish a diverted stream, the stream will be attached to the
indicated file, and the current stream will be made synonmous with

it The normal stream will remain attached, but will not be accessed
‘as long as the current stream remains switched to the diverted stream.
Detection of a restore request (")RI", "RO", etc.) while the current
stream is switched to the diverted stream, or end-of-information on
the diverted stream, will cause the diverted stream to be detached,
and the current stream will be identified with the nofmal stream

again,

Detection of any error will cause the current streams to be switched
to "user_i/o" so that the error comment and reply will always go to
the user's terminal. The user may restore the former stream-switching
when he desires with the restore requésts. The restore request, when
the current stream is switched to "user_i/o", will switch it back to
the diverted stream if one has been established, or else back to the
normal stream. Of cburse, the user can cancel his diverted stream
before issuing the restore if he desires to return directly to the

normal stream.

When APL invokes itself via the "uAPL" built-in function, it creates
input and output files and supplies the necessary command arguments
to itself.

Operation--Termination

Execution of an invocation of APL can be terminated Ey an error in’
the command arguments, the ")OFF" or ")CONTINUE" requests, or the
detection of end-of-information on the normal input stream. The

termination sequence is:

. the "program interrupt" condition handler is destroyed.

. the working segments in the process directory are deleted.
. all i/o streams attached are detached.

. return is made to caller of APL.

Yy

Page 3

8Z.10.01

State Indicator Stack

One constituent of the workspace is the stack which mechanizes the
state indicator. The stack for the current workspace is maintained

in segment "apl.stack.?" in the process directory.

There are three different kinds of frames possible in the state-
"stack: S-frames (suspension), F-frames (function), and E-frames
(evaluated input). When APL is running in the immediate execution
mode, an S-frame will be at the top of the stack. If a console
line makes a function reference, the evaluation of the é%sole line
will be held in the S-frame and an F-frame will be spawned to .
handle evaluation of the function. If that function calls another, |
again another F-frame will be produced. When the function returns,
its F-frame is popped and the interpreter resumes processing the
new stack top. In the event of an error during function execution,
a new S-frame will be created, and previous F-frames will remain

in the stack. A call for evaluated input causes an E-frame to
handle the input line (character input need not be parsed, hence

requires no stack frame).

The constituents of a stack frame are:

. its designation as S, F, or E.
. if F, a pointer to the usage bead of the associated function.

. if F, the line location counter (the number of the line currently

being processed).
. if S or E, the lexical tokens of the typed line.

. the token location counter (token within the line currently

being processed).

. if F, the local variable list (the list of variables which
were inserted into the symbol table when this function was

called and which must be removed when it returns).

the parse stack for use by the reductions analyzer. This stack
records the state of the parse and interpretation of the current
line, including pointers to all temporary values. Sufficient
information is remembered here to permit deallocation of all
temporary space in the event that execution is interrupted at

any arbitrary time and the frame discarded.

Page 4

BZ.10.01 Page 5

Operation--Majn Loop

The main path of control in APL is the line processing loop in the
parser. Fundamentally, the parser reads a line, lexically analyzes

it, parses and interprets it, and returns to read the next line.

In somewhat more detail, the line loop involves the following:,
e the "almset" switch is interrogated to see if the user has
requested an interrupt since the last pass thrdugh the line
loop. If so, see the discussion on interrupt processing

below.

. if this frame is a S- or E-frame then:

. output the S- or E-go-ahead characters.

. read an input line. |f end-of-information, restore
normal input stream or terminate APL. If character
error, type message and return to beginning of main

loop.

. if the line begins with nabla or right parenthesis,
give up control to the editor or request processor

respectively.

. switch input streams if the ")FIA"™, ")RIA", ")F[QA",

or ")RIOA" requests are pending.

. lexically analyze the line, placing the result in the

current stack frame.
. on the other hand, for an F-frame:

. verify that the line location counter is within the

function; else, function return to the calling frame."

. check for stop-control on the current line, type

message and suspend if so (spawn an S-frame on top of

the stack).

. reset parse state to null, set token location counter to the

first token, set parse rule pointer to the first rule.
. enter the reductions analysis loop:

. if the current parse rule is the error rule, type a syntax

error message identifying the first unprocessed token,

84.10.01

spawn an S-frame if current frame is an F-frame, and

return to the top of the main loop.

. if the current input and parse state do not match the

current rule, go to the next rule.

. if they do match, perform the actions associated
with the current rule, then jump to the rule which
handles the category currently at the top of the
reduction stack. The actions associated with rules
take care of: detection of end-of-line, branches,
function calls, evaluated and character input requests,

and most errors.

At this point,the reader is advised to read MSPM Section BZ.10.02,
which describes in detail the formal syntax of Multics APL source
lines, and contains the exact reduction rules used in the reductions

analysis.

Imptementation of Reductions Analyzer

The reductions analyzer is a small interpreter which is driven by
the (fixed) rule table. The formal of the rule table is:

1 rules(1:146),
2 action label,
2 pattern,
3 basic bit(36),
3 stack(1:7) bit(36);
where hietion" is initialized to a label on the particular actions
associated with this rule, and "basic" and "stack" are 36-bit masks
which look for a corresponding bit in the type-field of the token
or stack entry to be matched. An all zero mask signifies end-of-

list. Each syntactic type is assigned a unique bit of the mask.

The action coding takes care of both the syntactic actions required
(executing the PULL, DONE, ERROR, or promotion to a higher category)
and also the semantic actions (the actual interpretation on-the-fly

~ of the meaning of the parsed construct).

Page 6

64,10,01 Fage 7

F-frame; relative to
"apl.stack, 7" \F this

1S dan

The format of the reductions stack is:

1 rstack(lzinfinity),
2 type bit(36),
2 source offset,
2 usage offset;
“Wwhere. "type" is as discussed above, "source" fis the relative offset -
of the lexical token which originally generafted this stack entry
(relative to "apl.function.?" if this is andS- or E-frame) (used to
access the spellings of names, and also to access the character
position within the input line in case of error diagnostics), and
"usage" is the relative offset of the usage bead for this function
or variable in the symbol table (relative to "apl.symbol.?") (used
for accessing its value), or for VALs, CONs, EXPs and LISTs, the
offset of the value itself (relative to "apl.value.?"), or for
operator classes, which operator exactly. The reductions stack
grows from the current top of the state-indicator stack (directly
above the local variable list of an F-frame, or the token list of

an S- or E-frame).

Interrupt Prgcggging

This section explains the processing necessary to support the
"program interrupt" feature of APL. The user may signal "program
interrupt" at any arbitrary time and expects APL to abort any

possibly lengthy calculation.

In order to recover from an interrupt in the cleanest possible way
the four interrupt handling switches already described above (see

"Operation--Initialization", this section) are provided.

The first requirement of the interrupt processing is to maintain

the integrity of all pointers and storage allocations in the work-
space. To do this, aborts cannot be allowed to happen in the middle
of critical pointer mahipulations, while the data-base is temporarily
malformed. Since programmer-defined interrupts cannot be inhibited
in PL/l, an inhibit switch is set up in the APL interpreter to serve
the same purpose: if the actual interrupt occurs while the inhibit

switch is set, no processing of the interrupt will take place at the

time, but instead it will occur when the inhibit switch is turned off.

=N AWM e\ LA lqgc w

The next requirement of the mechanism is that it stop at the beginning-
of-line point in interpretation whenever possible. This is because of
the APL definition requirement that suspension always occur between lines;
if a line must be aborted in the middle, then the state-indicator must

be popped all the way back to the previous S-frame for the stop, with
consequent loss of the user's calculations. To allow the current
“caleulation to run to beginning-of-line whenever possible, the inter-

rupt processor does not abort immediately; it sets an alarm clock to

go off.in 0.5-sec of real time. If no beginning-of-line has been

reached before the alarm goes off, the necessary clearing of the state-

stack will take place.

The actual sequencé of events which occur upon the "program interrupt"

condition are:

. If the "inh" switch is set, the "intpend™ switch is set and

immediate exit is made to the point of interruption.

. If "almset" is set, immediate exit (the alarm is already set

from a previous program interrupt).

. ‘Inhibit.
'”
. Reset all console output béffers.
. Enable the alarm clock for 0.5-sec real-time signal.
. Set "almpend". When "almpend" is set, all further output

will be inhibited by the console output routine, and also
the interpreter main-loop will abort cleanly on beginning-

of-line.
. Reset "intpend".
. Reset "inh" (this may signal the:alarm condition, see below).
. Exit to point oF.interrupt.
Resetting the inhibit switch is always done by a subroutine which R

checks if any signals occurred while interrupts were inhibited. |f

so, they are signalled again:

. The inhibit switch is cleared.

. If "almpend" is set, signal alarm.

If "intpend" is set, signal program interrupt.

Exit to caller.

The sequence when the alarm clock goes off is:

If "inh" is set, set "almpend" and exit.

Inhibit.

If currently in function-definition mode, exit to the editor

to listen for the next editing request.

Wipe the current line being interpreted out of the current
state~-frame, deallocating any temporary values from the
value area in the process (pointers to these values are in
the VAL, EXP, and LIST beads in the reductions stack).

Do a non-local go-to to the interrupt coding at the parser's

main-loop top (see next paragraph).

The events which occur when "almset" is detected at the top of the

parser's main-loop are:

Inhibit.
Turn of f the alarm clock.
Reset "almset".

If the present frame is an F-frame, spawn an S-frame on
top of it. If it is an E-frame, pop successive frames off
the stack (deallocating any temporary values associated

with them) until an S-frame is encountered.
Switch i/o streams to "user_i/o".

Reset "intpend" and "almpend".

- Reset "inh".

Type "APL".

Go back to the top of the main-loop.

