BZ.10.02

MSPM SECTION BZ.10.02

IDENTIFICATION

APL Formal Syntax and Reductions B

PURPOSE
‘This document describes precisely the allowed syntax of input lines
to the Multics APL interpreter when it is in the immediate execution

S
mode. It also specifies the reduction rules which drive the parfer.

This document does not describe the syntax of system requests (lines
beginning with a right parenthesis), nor the syntax accepted in
function definition mode (g which differs slightly due to header
lines, labels, and recognition of the nabla character). In fact,
lines entered in function definition mode are not syntactically
analyzed at the time; they are only lexically analyzed. The lexical
analyzer outputs a token string which does obey the syntax rules
stated here, and it is this $tring which is actually parsed at

execution time.

TOKENS

Five kinds of tokens are putput by the lexical analyzer. They are:
. BEGINNING-OF-LINE. This is supplied by the lexical analyzer

prior to all other tokens.

. END-OF-LINE. Similar to BOL, this:.tokenfollows all other

tokens.

. CONSTANT. A1l constants, whether alphabetic or numeric,
scalar or vector. The token carries with it means of access

to the type and value of the constant.

NAME. All variable names, function names, and stop/trace
control names. The token carries the literal string which

is the name.

. OPERATOR; A1l other conéti{uents of the source line are

considered single character operators.

Page 1

BZ.10.02

Constants are typed and converted to internal format by the lex,
though neither this nor the rank of the constant is of syntactic

concern.

Names are not typed at lex time, but are left as literal strings.

At parse time, the referent of a name will be determined when it

~is first encountered, and this will type it as a variable, a dyadic

function (two arguments), a monadic function (one argument), a zero-
adic function (no arguments), or a stop/trace control. Whether a
function returns a value or not is not of syntactic concern.

Since the referent of a name may change unpredictably (due to
editing during a suspension) when the reference is evaluated,

the type of the name is again checked to ensure that it has not

changed; if it has changed a syntax error is signalled.

Some operators are typed into classes by the lexical analyzer.
There are five classes:
. S0P--scalar operator. Members are + - & & "co "f] *

"o | ! ",

. MOP--mixed operator. Members are ? %, $ "tr "rf.

. LOP--logical operator. Members are Man "or "na "o <
<=2>4

. DOP--dyadic operator. Members are "up "do "ep "ev "en

and backslash-hyphen.
. GOP--grade operator. Members are "gu "gd.

A1l other single-character tokens remain unclassified; that is,
each may be said to be a class by itself.

The lexical analyzer also discards the entire contents of lines

which begin with the lamp symbol (comment indicator). Such lines
come to the parser looking like §iGé@BoL EoOL.

BASICS

In summary, the above considerations give rise to thirty basic symbols

for the purposes of syntactic analysis. They are:

con gop [
var bol]
zfn eol H

Page 2

BZ.10.02

mfn £ "qu

dfn / "qq

stc "ib .

sop tilde "ce

mop "rr {

lop (‘ }

dop) backslash

CATEGORIES

The syntax of APL is very simple. It contains only five categories:

. COP--compress/expand operator, / and backlash.

. VAL--value.

. EXP--expression.

. LIST--expressions concatened with.semicolons.
. S--statement. A complete line.

BNF

~ The actual syntax rules are given here. Alternatives are listed

on successive lines.

cop: /
\
val: con
var
zfn
"qU
Qq
(exp)
val []
val [1list]

n

s: bol eol
bol } eol
bol } list eol
bol list eol

Page 3

BZ.10.02 Page 4

lists H
exp
3 exp -
list ; exp
list ;
exp: - "qu { exp
var { exp
var [] { exp

var [list] { exp
stc { exp

val sop exp

val lop exp

val mop exp

val dop exp

val dfn exp

val £ exp

val cop exp

val "rr exp

val sop . sop exp
val sop . lop exp
val lop . sop exp
val lop . lop exp

n

val "cc . sop exp

n

val "cc . lop exp

val cop [exp] exp

"rr [exp] exp

val
val tilde exp
mfn exp

"ib exp

sop exp

mop exp

gop exp

"rr exp

sop / exp

lop / exp

sop / [exp] exp

lop / [exp] exp

BZ.10.02 Page 5

(exp continued) sop £ exp
lop £ exp
gop [exp] exp
"rr [exp] exp

- The manner in which the syntax is expressed in these rules has no
particular merit other than that it readily leads to the reductions
analysis rules. |In particular, the above syntax is not simple

precedence.

REDUCT1ONS ANALYS1S SCHEME

A reductions analyzer is an automated syntax parser, driven by a table

of rules. Each rule has two parts: a pattern and an action. The
analyzer has a rule location counter, indicating the rule currently
being processed, and a stack, on which to push down basics and
category tokens while building up syntactic units. The analyzer
takes as its input the stream of tokens from the lexical analyzer,
which it reads left-to-right with no backing up. The next token to
be read, however, can be inspected without being read (or, if you

like, it is read but held in a one-token buffer).

Initially, the analyzer starts on the first rule with its stack
empty. lts operation is then:
. The pattern portion of the current rule is compared with
- the current stack contents and token to be read next. The
rule pattern contains a (possibly null) list of stack entfies
and a (possibly null) basic. The pattern is said to match if
stack list matches the top of the stack as far as the list goes
(a null list matches any stack), and the basic matches the
token next to be read (if the basic in the rule is null, the

next to be read is not inspected).

. | the pattern match fails, the rule location counter is merely

advanced to the next rule.

If the pattern match succeeds, then all of the following happen:
. If the next token to be read was matched to a basic 'in this

rule, the token is read (i.e., is not accessible any more).

BZ.10.02 Page 6

. The action specified in the action portion of the rule
is done. This action can be one of four things.
(1) ERROR: a syntax error is }écbghized. 7Processing
of the current line is aborted. (2) DONE: successful
recognition of a complete and correct statement has
occurred. (3) PULL: the basic Jjust matched, hence,
read, is pushed onto the stack. (4) promotion to a
category: the group of stack entries matched by the
pattern of this rule are popped from the stack and

replaced by a single entry of the given category name.

. The rule location counter is set to the rule designated
as the one handling the current stack top. Each possible
stack top has associated with it a (fixed) rule to be

processed next.

The reduction rules of the APL interpreter obey the following restrictions:
. - Actions of DONE or ERROR occur only on rules with null patterns

(i.e., rules which always succeed), and rules with null patterns
have only actions of DONE or ERROR.

. Actions of PULL occur only on rules with non-null basics, and

rules with non-null basics have only actions of PULL.

. Actions of promotion to a category occur only on rules with null

basics but non-null stack patterns, and conversely.

REDUCTION RULES

The following are the actual reduction rules used by the APL parser.
The labels down the left indicate which rule handles each stack top
(i.e., the rule transferred to upon creating a new stack top of the
given kind). The dollar-sign symbolizes the top of the stack, with
- stack contentsvlisted to the left, farther to the left the deeper

- in the stack. The symbol to the right of the dollar sign is a basic
to match the next token to be read. The action column lists the
action as either DONE, ERROR, PULL, or simply the new category name
~ for promotion to a category. For example, the rule after the one
labelled "sop" would be interpreted as follows: if the next token

to be read is a period, and if the stack top is a SOP, and if the

BZ.10.02

next-to-the-top entry in the stack is a VAL, then pull the period
into the stack (pushing down SOP, VAL, and everything below), and

go to the rule labelled "period"; otherwise, go to the next rule.

One other point needs explanation. The abbreviations "Lexp" and
"Llist" occurring in the basic pattern slot mean that any token
‘which is ultimately permitted as the leftmost token of an expression
o;, réspectively, a list, is to be accep{ed. ‘The members of the

"Lexp" set are:

con (lop
~var tilde mop
zfn’ mfn gop
"qu "ib "rr
"qq -~ sop stc

The members of the "Llist" set are the members of "Lexp" plus a

semicolon.

start: PULL $ bol

bol: . PULL $ eol
PULL $
PULL $ L1ist
ERROR

con: val : con $

zfn: val zfn $

nqq: val : nqq $

mfn: '

tilde:

"ib:

dfn:

dop:

mop ¢

A

(2 .

{ H PULL : $ Lexp
ERROR

PULL
val var

var: PULL 8 {
- $
$

Page 7

stc:

sop:

lop:

gop:

eol:

val

val

val sop .-

val
val "ec .

bol }

bol } list
bol list
bol

(exp

var

var

val

val

val cop

7
sop

lop /

gop

._.
_ o

©
S OO

H LR & LHF L R

R e R

[0]
X
o

r~en

—
]
X

el

sop

LR £HF
e N N

lop $ Lexp
lop $ Lexp
lop $.

lop $ Lexp

—
]
X

O

—
[
w
-

list
exp
exp
exp
exp

e T s Lo T ¥ Lo Vs T Vs B

BL.10.Uc Fage © .

e
.

]

. cop:

val:

list:

exp:

PULL

PULL
val
val
val
val
PULL
PULL
PULL
PULL
PULL
ERROR

PULL
list
list
PULL
val

PULL
PULL
ERROR

PULL
ERROR

PULL
PULL
ERROR

PULL
PULL
ERROR

PULL
PULL
PULL
PULL
PULL
PULL
PULL
PULL
PULL
PULL
PULL

exp

PULL
PULL
PULL
ERROR -

PULL
PULL
PULL
PULL
PULL
PULL
PULL

var []

var [list]
- var []
vapr [list]
- val []

val [list]
val cop [exp]
"rr [exp]
sop / [exp]
lop / [exp]
gop [exp]
list 3

;

n qu

val cop

val cop

val

(exp

val cop [exp
val "rr [exp
sop / [exp
lop / [exp
gop [exp

Trr [exp

et pan

-
xx)
X X X
© T O

exp
exp

L AL LA L LN

L LRHEHLR
r~ —

[0}

X

o

$ sop
$ lop

$.

$ eol
$Llist

g %exp

o 00O
T 0 T T

=/\\9._)Q.3 —) r—
3

-~
-

&
0

R RN B LRGBS
D o L—

[e]
Vet

L LR LR R
[TS TR THI TR S

B.10.0<

Fage 9

Wime LAV e VA tagc 1V

(exp continued)

list list ; exp $
list ; exp $
exp "qu { exp $
exp var { exp $
exp var [] { exp $
exp var [list] { exp $
exp _ stc { exp $
exp val sop exp $
exp val lop exp $
exp val mop exp $
exp val dop exp $
exp . : val dfn exp $
exp val £ exp $
exp. val cop exp $
exp val "rr exp $
exp val sop . sop exp $
exp val sop . lop exp $
exp val lop . sop exp $
exp val lop . lop exp &
exp val "cc . sop exp $
exp val "cc.. lop exp $
exp val cop [exp] exp $
exp val "rr [exp] exp &
exp tilde exp $
exp mfn exp $
exp "ib exp $
exp sop exp $
exp mop exp &
exp - gop exp $
exp Trr exp $
exp sop / exp $
exp) lop [exp $
exp sop / [exp] exp §
exp lop / [exp] exp §
exp sop # exp $
exp lop £ exp &
exp gop [exp] exp $
exp "rr [exp] exp §
list exp &

It is notable that the above reduction rules will reduce "var []"
and "var [list]" into "val", while there is no corresponding
BNF rule. This is done to avoid backtracking in the parse. The

reduction rules delay promotion of VARs to VALs until it is certain

that they are not left sides of assignments.

BZ.10.02 Page 11

TYPE CODES
This is a‘complete list of the 36-bit type codes used by the lexical

analyzer and the parser. The'codes are given in octal.

400000000000 beginning-of-line
200000000000 end-of-line
100000000000 constant .

040000000000 stop/trace control
020000000000 name (note 1)
020000000000 variable (note 2)
010000000000 zero-adic function {(note 2)
004000000000 monadic function (note 2)
002000000000 dyadic function (note 2)
/001000000000 scalar operator
000400000000 mixed operator
000200000000 logical operator
000100000000 dyadic operator
000040000000 grade operator
000020000000 backslash-hyphen
000010000000 /

000004000000 backslash

000002000000 "ib

000001000000 tilde

000000400000 "rr

000000200000 (

000000100000)

000000040000 [

000000020000]

000000010000 - 3

000000004000 "qu

000000002000 "qq

000000001000 period

000000000400 "ee

000000000200 left arrow

000000000100 right arrow
000000000040 other (note 3)
000000000020 compress/expand opekatqr (note 4)

e ® L\ o Vi

000000000010 value (note 4)

000000000004 expression (note 4)

000000000002 list (note 4)
statement (note 5)

, No{e 1: Since names are not typed by the lexical analyzer, all
name tokens are given type code 020000000000.

Note 2: When a name token is PULLed into the parse stack, the
actual kind of name will be determined, and one of these

four type codes will be assigned.

Note 3: Any other single character appearing in the input stream
is assigned this type. This token will ultimately cause a

syntax error in the parse.

Note 4: These four type codes represent categories; hence, they are
not output by the lex, but only internally generated in the

parse by promotion actions.

“ Note 5: Since end-of-statement is detected in the actions for the
EOL rules and the parse stopped there, promotion to type
"statement" actually never occurs, and no type code is

assigned.

Note that with the above type code assignments, the masks for "Lexp"

and "L1list" become:

175643606000 Lexp
175643616000 Llist

v 5\55

L ad

