ty

To: . Bensoussan
. Clingen

. Corbatd
Gintell
Morris
Roach

. Saltzer

. Schroeder

S. Webb :
ebber U"\AL ?

From: J,) Voydock
. Feiertag

Date: August 13, 1971

Y

= LbrmzZaEaok

Subject: Access Control Proposals

Enclosed is a document describing our proposals on access control,
as modified by the meeting of July 27 and subsequent discussions.
The proposal concerning gate lists has been tabled until Schroeder
finishes documenting his plan to make it possible for a user to
use more than one protected subsystem, There will be a meeting

to discuss these proposals on Thursday, August 19, 1971 at 10:00
in room 511 at 545 Technology Square.

LAt

v

This document describes a number of proposed changes to the access control
mechanism that have evolved over the space of several months, These include:

I, A new set of directory access modes, and a plan to make all supervisor
modules enforce access the same way.

II. Associating a ring number with a directory. ’ ———
III. ~Bis&§é§2§%.the append attribute on non~directory segmentq:Xk i STT*‘ ﬁ”?“"
Iv. Having one set of ring brackets per segment. | |
v. Adding a p£§%§é§f2;£§i§2%e to segments., ([« Acc

VI. Eliminating CACL's and replacing them with initial ACL's.

= S PR Wil

VII. Adopting the idea of extended access and using it to implement
access control on directories.

This section describes the newly proposed set of directory access modes and
presents a plan for making all supervisor modules enforce access in the same
way. In addition, the idea of associating a ring number with a directory is
presented.

First we must establish some terminology. A D-operation is an operation
performed on the attributes of a segment. This includes modifying its
names, its ACL, its protect attribute, and its max length, deleting it, and
listing its attributes. It also includes adding a segment to a directory.
An S-operation is an operation performed on the data of a segment, This
includes initiating the segment; reading it, writing it, executing it,
truncating it and setting its bit count.,

The major change proposed is to get rid of the "execute" directory mode and
to say that one's right to perform an S-operation on a segment is completely
determined by the access information appearing on that segment's ACL, That
is, to initiate a segmerit one needs non-null access to that segment, to

read it, read access, to execute it, execute access, to write it, truncate

it or set its bit count, write access. One's access to the directory contain-
ing the segment is not taken into account when performing an S-operation.
Because a certain class of users have need of more security than this plan
provides, we have had to modify this proposal to provide a sure means of
denying access to an entire subtree of the hierarchy. This will be discussed
in detail below.

S-operations on a segment are controlled by one's access to that segment
(almost). D-operations are controlled by one's access to the directory cori-
taining that segment. Let us now describe the various directory access modes:

Page 2

I status (formerly read) If a user has status access on a directory,
he can list the contents of the directory and find out any and all
information about the attributes of any entry in that directory, he
cannot add entries or change the attributes of existing entries.

II, modify (formerly write) ' If a user has modify access on a directory,
he can change the attributes of existing entries, He cannot add
entries, or list the attributes of existing entries.

ITI. append If a user has append access on a directory, he may add entries
to that directory. He cannot list or modify the attributes of existing

entries. Hor - Bom - - ot Wl cene A

IV. prevent 1If a user hason a directory, he has no aceéss Cw&““”“
to the contents of that direc ory or any of its subdirectories (i.e.,
to the subtree of the hierarchy whose root node is that directory).
In no way can be obtain any information about anything in that subtree.
Since the other access modes make no sense in conjunction with prevent

access, the file system will not allow this.

Prevent access has been added to provide another level of security for a
certain class of users. For example, some project administrators would

like to allow sharing of information among project members (including the
right of one project member to give or deny access to other project members).,
At the same time they would like to be sure that no project member, either
accidentally, or deliberately, can give access to anyone outside that project
to any of this information. If the project members are to use that standard
Multics user enviromment, this cannot be done without prevent access (or
something equivalent). One could argue that a project administrator has to
trust his project members and that they could (for instance) print out a

copy of confidential information and give it to someone who has no right to
have it. This is true, but in the event of an information leak, prevent
access narrows down the possible sources of the leak. The project administra-
tor who has used prevent access to limit access to information knows that the
leak must have occurred outside the system. That is, by someone making a
physical copy of the information rather than by someone inadvertantly or
deliberately giving an unauthorized person access to the information online.

Now let us consider what may happen if a user tries to perform an operation
on an entry whose pathname is >DI>D2...>Dn>E. Six distinct error conditions
(related to access control) may occur.
I. error_table $noentry ("Entry not found")
E does not exist.
II. error_table $no_directory ("Some directory in path specified
‘ does not exist")

One of D1,...Dn does not exist

Page 3

III. erro;_tablg_$incorrec;_access ("Incorrect éccess to directory
containing entry")

The user does not have correct access on Dn to
perform the operation

Iv. error_table$moderr , ("Incorrect access on entry")

The user does not have the correct access on E
to perform the operation.

v. error_table $noaccess ("No access to subtree of hierarchy")

The user has P access on one of Dl,...,Dn

VI. error_table $no_info ("Insufficient access to return any
information")

The user does not have enough access to be given
any information. ’

The following flow charts describe what access checks must be made by all
modules of the supervisor that manipulate segments. These checks should
be made when a segment fault, linkage fault, incorrect access fault and
undefined access fault occurs as well as by the file system primitives.

The following principles are implicit in the flow charts, The motivation
for them is that they simplify the access checking mechanism and that they
give away little (if any) information that couldn't be determined by
experimentation. '

1. If one has non-null access on a segment (directory or non-directory) one
has the right to know of its existence and one's effective access to it.
(For directories non-null means either S, A or M or some combination

[N

thereof), - ,

wo p 7)

2. 1If one has non-null access on a directory, one has the right to know of VAA1'7b
the existence of particular entries in it and one's effective access to]
them, 1

St

As an aside, note that these principles imply that if one has non-null access

to a segment or to the directory containing the segment, the status primitive itg‘(uomk

should admit the segment exists and return one's effective access to it =- SJJ*
even if one does not have status permission in the directory containing the kf
segment. \"6‘9 A

Let us now consider the flowcharts:

=0 ’

4— L= 6*4

IMD

Hro_ Does DU 2xwl P

Page 4

no

47 ' MO
| Dot wasr hone

P acuoe en DL

b

g T
®

\<
- 4 v ~ Wusﬂ
Dew uwon have 4 e
M2 ron- wull accean : Sy
o De's paumt , ' -

Da<o uann hare
men-null

accLeo

| em DL‘ng’C

gt

Twwn

-$MMCCOA:) m_ $ro_info 1 |

Coplom C

$rodiaclss J

Page 5

e D-opmration,
L e
Dot E | h
M(Ot ? ne E;?nmcw
[L ™ Dn
Y2 [Mtuw;umuiauz / nctinn exnon ol | Eﬁggﬁ%
no-m{o ‘ on Dn f@ (4]
optralio
| | mo
— o Ton T |
occwo on E vt coc
The opMa.Ulm Pml{m 2o cods T,
L moot w‘o'vm
Mo v
‘ | Dot h ®
Do%s uoen harve 2 Tanm Muﬂu:““:: -
mon-mu ¥ accean amon-tabl-$ =
Y modon
J‘ no - . J‘no
Doeo uasr have mti'w: et , .Eg&:‘{;hg:-:o;mu
mon-null acceo meovodlacas 7'\—4(‘— .
cr Dn ¥ ‘ - r
= pr>
2 v : P
o 2l pmoinfo £
M0
en-nwll accap
| m E P
e
LN $
mecovd el acctao

Page 6

Finally, we propose that every directory have a ring number associated
with it called the limiting ring. This ring is the highest ring in which
any D-operation may be performed in that directory. Thus if the limiting
ring of a directory is 4 and a user has SAM access on that directory,
then he can perform any D-operation on it in rings less than or equal to
4 and no D-operation on it in rings greater than 4.

One ring number per directory is sufficient for all known needs. If the
need arises this can be expanded to "ring brackets" or perhaps one ring
number per access mode. But, for the sake of simplicity, we feel that we
should start out with one ring number and expand later if necessary.

Consider now the access attributes of non-directory segments. They currently
have the access modes read, execute, write, and append. The latter mode,
append, was intended to allow a process to add data to the end of a segment
but not allow modification of the data already in the segment. Unfortunately,
we are not currently able to implement this mode. The append attribute is
currently used to allow growing of the segment, i.e., add new pages to the
end of the segment. The current use of the append mode is not well known

or well used. It is primarily used to artificially set a maximum length

on a segment, a feature that should be more properly implemented by adding

a maximum length attribute to a segment, Since there is currently mo

proper use of the append attribute it should either be deleted from ACLs or
it should have no interpretation, i.e,, reserved for a later proper implementa-
tion.

Besides the access modes,segments also have sets of ring brackets. The current
association of a set of ring brackets with a segment and a user has the
disadvantage of being difficult to explain and visualize. With the current
scheme a segment exists in different rings for different processes. A

great deal of simplification is achieved by having only one set of ring
brackets associated with a segment. This simplification causes no loss of
functional capability beécause ‘any accessing rights that can be granted by
multiple sets of ring brackets on a segment can be achieved by having a
procedure in a privileged ring simulate the access associated with the segment.
This modification also solves the problem of what ring brackets are to be
associated with a process not specified on the ACL. Clearly with one set of
ring brackets, those are the only brackets that apply.

The current delete primitive requires both write permission on the segment

and modify permission in the directory in order to delete a segment. This
property has been used as a means of providing self protection again accidental
deletion of segments, i.e., if the segment does not have write permission,

it cannot be deleted. This has the strange property of protecting object
segments but not protecting data segments against deletion. It therefore seems
more useful to provide a protect attribute on a per segment basis. If the
protect attribute is on, the segment cannot be deleted. This added protection
eliminates the necessity for requiring write permission on a segment in order
to delete it. Therefore, the delete primitive will require modify permission
in the directory and the protect attribute being off in order to delete a
segment.

Page 7

The CACL is a means by which access to a group of segments can be controlled
easily, Unfortunately the grouping used by the current CACL mechanism,

i.e., all segments in a single directory, is not an appropriate ome. It is
usually not the case that all segments in a particular directory want similar
access. Secondly, since the CACL is logically appended to the ACL of a segment
the effect of changing a CACL upon the access to any particular segment is
unclear. It depends on the contents of that segment's ACL. Thirdly, in

a multiple ring situation, the rules concerning modification and use of CACLs
become complex and unworkable and render the CACL useless. For these reasons
the CACL is to be eliminated from Multics. The detailed arguments are given
in the memo on CACLs dated June 7, 1971,

Some useful features of CACLs will be preserved., Access to la:QG/ZI;;;;;’

of segments can be modified by use of the star convention in ACL commands,
Also default initial values for ACLs can be established by the use of the
initial ACL,

The initial ACL is a means by which a user can specify the ACL to be added to

a4 newly created segment in a specific directory. Each directory will contain
two sets of initial ACLs, one for newly created directories and one for newly
created non-directory segments. Each of these two sets will contain an initial
ACL for each ring.

Each initial ACL will consist of a list of star names, i.e., file system entry
names which may include the star ("#') character to indicate a class of names.
With each star name will be associated a list of ACL entries. When a new
segment is created via a call to append, the appropriate initial ACL will be
found by using the type of the segment (directory or non-directory) and the
current validation level. The list of star names is then searched for the
first such star name that matches the name on the new segment, The list of
ACL entries associated with this star name is then used to form the ACL of the
new segment. The ACL entries specified in the call to append are then added
to the new ACL,

New primitives and commands will be provided to manipulate initial ACLs.
Separate commands will be provided to set entries (add or change), 1list
entries, and delete entries for both initial ACLs applying to directories and
non-directory segments. The validation level at the time of the operation
will determine which ring's initial ACL is involved. When an entry is added
to an initial ACL it is checked to make sure the specified user id is valid.
This guarantees that the initial ACL can be validly added to a new segment
with no possibility of error. Star names will be ordered on the initial ACL
in a menner similar to the way process group id star names are ordered on
ACLs. The most specific names will be listed first in a manner that favors
specificity in leftmost components, Rather than state the precise algorithm
the following listing will indicate the ordering.

uf\¢3 ¥3 Wl o %Atrr o) ‘ «
%A e Yool b w0 ke

leve & (é’w“ mem

S | m/gl Cparsn{ QX > = °VX(J;A)
. wX wnt ock .

te -”Rej(vﬁ A\ '\>

oud

~

P

Page 8

x.y‘z
achCQd
a.*.b

a.,*%*

*,a,b

* . % a

. .

%%

The file system currently supports a feature called extended access, the
purpose of which is to allow subsystems a convenient way of specifying
access attributes other than the standard attributes, on segments which
those subsystems manage. Extended access is implemented simply as a set
of bits in each ACL entry which the subsystem may set and interpret as

it pleases; the file system does not interpret these bits in any way.
Currently, extended access is used only by the message segment primitives
as a means of specifying access to message segments,

Directory control is another logical candidate as an application of
extended access, Currently the directory access attributes occupy the

same bits as the standard segment access attributes and the directory

ring brackets also occupy the same storage as the standard segment ring
brackets. This duplicity of use has led to the unfortunate result of un-
wanted similarity between non-directory segment and directory segment access
attributes, In order to allow full independence in the selection of
directory access attributes, and make directory control and segment control
more independent, the directory attributes should be handled separately from
segment access attributes. The obvious separate mechanisms is that of
extended access., Directory segments would have standard access which would
be rw for all users(on the ACL)with ring brackets of 0,0,0 on the segment
and would also have som of the sma directory attributes as extended
access, As stated above this has the significant advantage of permitting
the segment management facility to compute access in a uniform manner for
all segments without having to special case directories as is presently
done.

As currently implemented extended access provides extra bits for access
attributes on each ACL entry. However, the proposed modification of making
ring brackets a per segment rather than per ACL entry attribute means that
some standard access attributes are no longer in the ACL entry. For
consistency, therefore, an extended ring bracket field should be added to
each branch as an extension of the standard ring bracket field in order
that subsystems using extended access can treat ring brackets in a manner
akin to the standard access.

w 8] MMJ /\ ¢ ;ic‘v”’d oLt (/W
w

Page 9

A[jorc' bha A’ deferm o‘ﬂ‘? L-’A"‘«K o

two

‘/ear

ﬂ//(.«r

L=

b

AUpe y; X ory/ (/u»\.,{é
firit it ot W2 Ace

on

£b Cdm 0 ne,\j

I)ae.r ¢ o'(X (/t«.'.cé?
yeu
y

T, the éﬁ Compwe ret of x & stu,/
nho
y

T, the &

o t 3 Ldmfade“)‘ ?’f kK a Jau;/e dé‘(r,)

<A

7(.!.

DO"J ""\ e (T O pd ""nj c¥ Yy €« o ?
Yes
y
L.I 'é"(t. ﬂ- Qcm,lud o‘l / é, '{“V }
no
y/
L N
I“ ‘{{'e vt (OA\/dﬂgn’é 0.‘ Y 4 (/O‘l‘jf (fﬂ,]

no

GVJC’r

lof‘J

be fore

y ‘J

X ¥

‘6 /urc /

’L@f Mf '(6/

