FROM: z V. L. Voydock, R. J. Feiertag

e e e S

DATE: June 7, 1971 ‘

SUBJECT: . A Proposal for the Elimination of CACL's

This memo presents a number of arguments for the removal of the concept of
the CACL from the Multics File System, and its replacement by a new construct

which provides all of the benefits of the CACL with none of its problems,

There are a number of problems which make CACL's much less useful than
they might otherwise have been, These fall into three categories:

a) 'Too global" access specification

b) Difficulty of determining the effec; of changing a CACL entry

c) Interaction with rings

First let us consider a)., Let us define access type as follows: two
segments are of the same access type if they require exactly the same
access in order to be correctly utilized., (For example, all non-execute-

only-pure procedure segments are of the same access type, namely ''re").

By '"too global' access we mean that a given CACL entry applies to all seg-
ments in the directory, Thus if one has segments of different access
types in a given directory and one wishes tb use the CACL to control
access to these segments, one must put the 'or' of the access types into

the CACL., For example, if one has both executable and writeable segments



segments in a directory the mode specified in the CACL must be ''rewa'l,
This totally disables the Multics protection mechaﬁism, since one can
now write into pure procedure segments and attempt to execute data seg-
ments, Thus to safely use the CACL, all segments in a given directory

must be of the same access type, This is a rather harsh restriction.

This préblem is greatly multiplied if we introduce the concept of extended
access, Extended access is software interpretable access which will

vary from subsystem to subsystem. In order to use the CACL, all segments
in a given directory must not only be of the same standard access type

but of the same extended access type, This is a very harsh restriction,

The second problem is that it is difficult to determine what effect the
changing of a CACL entry will have on access to the segments in the direc-
tory. This depends entirely on what access appears on the ACL of each
particular segment, For example, a user might put Jones,Multics on the

CACL of one of his directories with ''re' access, thinking that this would

give Jones,Multics ''re' access to everything in that dlrectory. As we

all know, this is not necessarily the case.; If segment X in this directory

has an”ACL entry '* Multics.* null' then Jones. Multics will not'have

access to X even though he appears on the CACL,



The third problem comes about due to the interaction of CACL's and rings,
Since the CACL is logically appended to the ACL of every segment in the
directory, a change to a CACL entry is effectively a change to every ACL,
Thus, in order to determine whether a given user has the right to modify
the CACL, the system must apply the rules described in the memo on ACL's
above., In particular, the system mustvyerify that the validation level
of the user making the request is less,t;;n or equal to that userls first
ring bracket, rl, with respect to every segment in the directory. Besides
being expensive to implement, this makes the CACL practically useless

if one has segments from more than one ring residing in the same direc-
tory., For example, if one is running in ring 4, one cannot manipulate

the CACL of any directory containing a message segment, since message

segments reside in ring 1. !

This extremely harsh restriction must be imposed just to enforce the

rules governing access control, 1In addition, if a user wishes to securely
make use of the ring mechanism by limiting the rings in which a segment

can be read or modified or executed he must either fully specify the ACL

of that segment (i,e. have a ', *, *' entry on it) so that the CACL will

not be used or he must verify that the CACL does not contain an entry

that would invalidate his limitation, For example, suppose a user wishes

to create a segment that is only manipulable in ring 1, Let us also suppose

that the CACL of the directory in which the segment is to be created con-

tains the single entry '*,% % rewa 4, 4, 4', Then the user would have

to fully specify the ACL of his segment since otherwise anyone not explicitly



.

appearing on the ACL would be able to manipulate the segment from ring 4,

It should be clear from the above that the CACL, as it is now defined, is
almost useless. Two proposals, that have been previously discussed, for
changing the definition of the CACL have major flaws, The first proposal

is to have one CACL per ring., This solves the problems raised by c),

but does nothing for problems a) and b)., For this reason it is unacceptable,

The other proposal was to have ﬁultiple‘éACL‘s;“ That is, segments would
somehow be gathered into groupé“;;;ﬁfégéﬁé ﬂgbiﬁg its own CACL, This |
solves problems a) and c), Segments could be grouped according to access
type or ring or whatever else proves useful. This does not solve problem

b). In order to intelligently change a CACL entry one must still have

detailed knowledge of the ACL's of all segments in that CACL group, 1In

N
addition; since managing a single CACL now causes some confusion, managing
multiple CACL's could not help but increase the confusion, Next,when

one wishes to change a CACL entry one must check the ACL of every seg-
ment in the group to see if the change is legal -- an expensive opera-
tion. Finally, there is the problem of how to do the grouping, If it

is done by name, then segments with more than one name would fall into
more than one group and one's access to a segment would depend on which
name one used to reference it. This does not seem to be a good idea,

If we are not to do the grouping by name, the only reasonable choice

seems to be to introduce a new branch attribute, let us call it "CACL
group number' by which segments will be grouped. When the user creates

" a segment he must specify a CACL group number for that segment. This

adds one more complication to the life of a Multics user, For these



gl

g i e

-5-
reasons, we contend that this scheme will be difficult to explain and use

and should be discarded.

The CACL construct provides two features that we would like to preserve,
First, it pr§vides a way to specify the initial access to apply to newly
created segments, That is, it saves the user the trouble of specifying
an ACL every time he creates a segment, Of course, because the access

is '"too global' (see problem (a) above) this isn't as useful as it could
be. Second, it provides a way to specify global access, that is, control

e ey

access to a large group of segments at once. Again because its.

SRS |

+

access

et e

is "too global' this is not as useful as it could be,

We now propose a scheme which provides both these features in a much better
way and has none of the probléms discussed above, We propose that the CACL
be eliminated and that the concept of an "initial ACL" be introduced,

When a segment is created, its '"initial ACL'" will be appended to the ACL
with which it was created, The name by which the segment was created

determines which "initial ACL'" to use, and the system allows the user to '
. 4

specify that a group of segments will all use the same initial ACL by

using the star convention, For example, the user could specify that all

et

éegméﬁts.créhﬁed wfthdﬁmﬁéﬁe“éhat'E;ééheé-“*Qézl"“shouldrhave the same :

- initial ACL, A naming convention is reasonable here where it wasn't for

multiple CACL's since initial ACL's only come into play when a segment is
created, That is, the naming convention is used only to determine what the
ACL should look like when the segment is created, If one later renames

a segment this will, of course, have no effect on its ACL, Whereas, the reader will



-6-
recall, in the case of multiple CACL's, the name was used to determine 3
access on each name reference, That is, if one rgnamed a segment and ;UQJ
réferr?d to it by its new name, one might have different access to it J‘;beﬂﬂ

/ °
than before it was renamed, éﬁ;LD;

Before discussing the virtues of this~scheme, let us discuss two problems
with it, The first is an intrinsic problem with rings which our scheme,
of course, does not solve, A user trying to create a segment which can
only be used in certain rings must have complete control over what appears
on the ACL of that segment and therefore cannot blindly use initial ACL's.
The problem is best illust;ated by an example. Suppose a user wants to
create a segment X which is fully accessible in rings. lower than 4 and

not at all accessible in other rings. He would create X with ACL

"x,% % rewa 3, 3, 3". Suppose the initial ACL associated with X con-
tained the single entry 'Jones,Multics,* rewa 4, 5, 5"; the rules for
modifying ACL's would allow the initial ACL to be appended and suddenly
the segment wou%d be accessible outside of ring 3. Therefore, the user -. ____ ...
would either have to check the initial ACL to insure that it did not

§ R I
- , = \/J‘r "‘I\w"'
contain an entry which violated security or(not use the initial ACL,’ 7Y

The perceptive reader will have noted that this problem is analogous to
one encountered with CACL's above. The problem is intrinsic to the ring
mechanism, Only the creator of a 'protected" segment knows which rings

should be able to access it and in what way. The system can only insure

that a changeHEQwéH'ACL is legal it cannot insure that it is suitable,
!
e e e . >



.7- N

Another possible problem is that our scheme may significantly increase

W
0
the size of a directory since information now stored in the CACL will have L y
g U
to be stored in the ACL of every segment in the directory. What effect V“4

this will actually have has not yet been determined.

. The virtues of ourlﬁroposal are many, First, it provides the initial
access féature of CACL's. 1In fact, it is better since it allows different
segments in a directory to have different initial access. Global access,
the other feature that CACL's provide, can be had by using the setacl
command with the star convention, For instance, if one wishes to give
v"rwa" access to all pfl segments in a-directory to Jones,Multics, one merely

types _ -
"setacl *,pgl rwa Jones,Multics"
This is better than the global access CACL's provide since it allows the

user to specify different global access to different groups of segments, - S

In addition to doing a better job of solving the problems CACL's were meant
to solve, our proposal has the virtue of simplicity, Problem (b) dis-
cussed above disappears. In addiEion, in order to determine who has the
right to access a segment one merely lists its ACL. Tth our scheme should

eliminate much confusion while providing users with more flexible means of

controlling access to groups of segments.



