RECEIVED
JUL 2 61971

. SALTZER
TO: A, Bensoussan J. H. S
C. T. Clingen
F. J. Corbatd
J. W, Gintell
N. I. Morris
J. H, Saltzer '/
M. D, Schroeder
S. Webber
FROM: V. Voydock, R, Feiertag
DATE : July 26, 1971
SUBJECT : Access Control on Directories

Attached is yet another document on access control. Please try to read

it before the meeting of Tuesday, July 27, at 3:00 p.m. I apologize

for this last minute distribution but the ideas presented here did

not jell until last Friday,

The purpose of this document is to present a plan for making all the file
system primitives enforce access control in the same way and, at the same
time, clear up some confusion about the meaning, with respect to direc-

tories, of the wvarious access modes,
The first step is to list the various modes and their interpretation:

I. use (formerly execute) If a user has use access to a directory, he

may ''use' any program in that directory (that he has the correct access

to). This includes executing the segment (if he has execute permission

on it), reading it (if he has read permission), deleting it (if he has
delete permission), truncating it and setting its bit count (if he has
write permission), He can list specific entries but the only information
he is given is the fact that the entry exists and his access with respect
to that entry., He may not use the star convention. He cannot add entries

or change the attributes of existing entries,

II. status (formerly read) If a user has status access on a directory,

he can list the contents of the directory and find out any and all

11

information about any entry in that directory. He cannot 'use' programs

existing entries,

in that directory, add entries or change the attributes of

ITI. modify (formerly write) TIf a user has modify access to a directory,

he can chiange the attributes of existing entries in that directory. He

1" 1"

cannot list the directory (not even specific entries), He cannot ‘'use

-2-

or add entries, Modify permission without status or use permission is
not particularly useful and it complicates the access control mechanisms
(especially error handling). Therefore, the file system will not allow

this case to occur.

IV, append If a user has append access to a directory, he can add entries
to the directory, He cannot list the directory (not even specific entries).
He cannot modify or 'use' existing entries. Append permission without
status or use permission is not particularly useful and it complicates
the access control mechanisms (especially error handling). Therefore,

the file system will not allow this case to occur.

We come now to a concept which has caused a lot of confusion in the past,
We would like to have the ability to allow someone to work in a directory
even though he has no access to the directory containing this directory,
For ‘example, if one had a project in which one member was not allowed

to know anything about any other member, one would like to give each member
SUMA access to his own home directory and "null" access to his project
directory. By themselves, rules I-IV above do not allow this, since

null access to the project directory implies that the user does not have
the right to know that a given entry in the project directory (including
his own home directory) exists, Thus, he cannot be allowed to access
segments in his home directory for the very act of accessing these seg-

ments tells him that his home directory exists,

-3-

In the current system this problem is solved by a mechanism which I

will call the rule of implied access, It is stated as follows: "TIf

a user has non-null access on a directory, he is allowed to operate in
that directory regardless of his access to any superior directories",
That is, the fact that he has non-null access on a directory implies

that he knows it exists, The disadvantage of this mechanism

is that it makes it impossible to deny someone access to a subtree of the
hierarchy without denying him access to every directory in that subtree,
One solution to this problem is to add another access mode P (for 'pass
through') to directories., P permission on a directory allows a user to
do nothing in that directory, but does allow him to operate in directories
inferior to that directory. Thus, in order to operate in a directory,
the user must have P or U permission on all of its ancestors, To cut

off access to a subtree of the hierarchy one merely puts null access

on the root node of that subtree,

Let us now assume that the user wants to perform some operation on an
entry E in a directory D. If he does not have P or U permission on all
of D's ancestors he cannot operate in D so the file system returns the
error_table $noaccess error code (see below). Otherwise, four distinct
error conditions (related to access control) may occur in trying to per-

form the operation on E.

I. error_table $noentry ("Entry not found')

E does not exist and the user has status or use permission in D,

gt S

“lm

1I. error_table $moderr (''Incorrect access on entry')
The user has the correct access in D to perform the operation,

but does not have correct access on E,

III. error_table $incorrect access (''Incorrect access to directory
containing entry'')
The user does not have the correct access on D to perform the

operation, but does have status or use permission on D,

IV. Error_table $noaccess ('No access to subtree of hierarchy')

The user has null access in D or only P access in D.

The following flow chart will indicate that these codes are both necessary
and sufficient and will at the same time describe what access checks all
file system primitives must make when trying to perform an operation on

an entry E in a directory D.

Dets voaer have maudll (N XIV. P Y0 /LLKV\M
& crw% Pacwes m D? mm-m-fbmoaww
o
A\ ' -
EDMD Tre van hawe cennech o sl ‘
accias v O o pmgafumw 7 “ —) wm-&ﬁr&__iwmﬁ.acm
&ﬁma.tw‘m v J : ,
Do E'th T) o C‘%Wé , | Do X and
| G &um o ru e, A0
append opmoj}o'wf; 2t c;odlg,

noe

Sw«?%%w—m@j

E bt e Tyons G Ve, ‘“—’
EL@%&W,% éﬁgaﬁw? £ >\\zxmm-f%—$mmcéuf> (

" Do e ‘oarn e covad | sl |
{am;xo'e’:a E ;’o W ez —> wm—@b&-$ﬂnoo{mw
; Tha @;&maﬁm v

e
l?mfwm tha oimmatciq. ’@(@

v

2t cend it occunrs),
‘E/LQTWWI the ameal Wam
{

ANnéa coiﬁ, F(Mw

| —

