Thewghl gou might t 7 wtd

: gue e
aﬂb%, {I Lo a colle Tion %’Jawt
eoncarming W&FM‘&:*% .;MFM'M
Dywemo c;:u P X Mmailen ga ‘-’L

fronL.__.M_,____

X RX AN E XN BT
This term I have transferred the existing 360 PL/I code to Multics.
Thlss necessitated:

Coding and testing of dynamo_operators_.

Rearranging dyn_c_error_ to output messages directly to user_output,
and eliminidtion of the procedure edump.

Transferring dyn_trans_ nearly as-is.

Transferring dyn_sort_ nearly as-is.

Transferring dyn_sdump_ nearly as-xis, but changing the method
by which the equation numbers were converted.

Transferring dyn_ddgmp_ as is, and fixing a serious bug.

Recoding dyn_lex_ completely, incorporating ctlproc.

Rearranging dyn_codegen_, and redesigning the object code macros.

In addition, the structure of the data bases was completely rearranged from
all static external with refer-based structures to based structures overlaid
on working segments.

The object code interfaces and the interfaces with the operating sysbem had
to be completely redesigned to fit in with Multiecs.

What needs to be done to get it working

T{%pe’wnd—o&mimr/bug’ﬁ dyﬁl:ﬁiﬁ:“mth—thwmsuggg;eme numbers.,F- A
I“think is happening is that the rightmost digit is being cut off. P

The remaining undebugged code: dynamo_operators_

The plot routine is in skeleton form right now so that a raw dump of the
v_tabs can be obtained in order to be sure that they are right before proceeding
with a plot routine.

Imprevements to the implementation

A mmcro processor needs to be added, in order to facilitate the implementation
of the built-in functions delay3 and clip, which use temporary variables which
ought to be generated via a macro call., Also, the table facility should be
added as soon as possible, since people use them widely.

It would be hard to say what could be done to the implementation. So much

depends upon the reordering phase that a major change would be hard to make.

It night be nice to make the symbol table into a hash table, but it has to

be linearly scanned so much that that might not be such a good improvement.

I think the thing is about as efficient in syntax and godegeneration as it can

get. Some minor bit fiddling could be done in reordering but I don't recommend

doing anything to it as it is very obscure in places and in fact there is only

one person in the world who completely understands how it works, mamely who wrote it.

d&”‘“’d‘“"l’- wea W b char conmension ?
pwi ¢ pwa an cwvum% &M stalic .

aemt amodudeg (.!,2. dﬁ""t‘m?) miodechoae dabelo o0 Muﬂomlm Lo «'marméd

The following modules are part of the dynamo compiler:

dynamo_operators_
Performs run-time services for the object program which are
unwieldy when coded directly in machine language. There are
currently two entries: dyninit_, which initializes the stack /?
frame for the object program from the run-table chains, -

dynio_ which interfaces to the data collection tables and which
is called from the object program whién it needs to have the
data collection tables updated.

dyn_e_error_
Issues diagnostics to the user's console when errors are
detected during compilation.

dyn_trans_
Performs syntactic and semantic analysis of the source program.

It generates the intermediate code chains. It is a stack-
driven bounded context analysis program (operator precedence).
It performs evaluation of constant expressions.

dyn_sort_
This phase reorders the intermediate language according to the

copss-reference bits into the order in which the ocode must be
generated.

dyn_sdump__
Generates a formatted listing into the listing segment of the

identifiers used in the compilation with attributes and references.

dyn_odump_
Generates a formatted listing into the listing segment of the
state of the ordering table after reordering. This program is

primarily a dehugging tool.

dyn _lex_
This is the lexical analysis routine for dynamo. It is responsible

for generating a source listing if requested, parsing the input
segment into tokens, returning them one at a time to syntactic
analysis, and processing control statements"$...;". There is
an initializing entry setup_, which sets up internal static
variables for the main routine

dyn_codegen_
This is the code gmmerator. It uses the intermediate code

tree as input and produces GE645 machine code into the object
sggment.

dyn_alm_
This is an alm program used as a transfer vector to obtalin
external linkage from the dynamo object code. The function of
this program is described more completely where the object
program environment is described.

dyn_odump__

Thi.s rather simple precedure simply uses the ordering table work_segment 2.order
and the indexing variables n_l,n s,n a,n r, and n_1 to format a listing of
the order in which the eyyations will be complled to the listing segment.

dyn_sdump_

This procedurex produces a formatted listing of the symbol table. It first
uses the array deqn as a temporary area to sort the symbol table (maintaining
indexes to sym_tab in deqn) via a simple interchange sort.

It then loops over all entries in the symbol table (that is, deqn) to print
the atiribute and cross reference listing.

The first line contains the infeemation from sym_tab, that is, a '*! for
inflag, and the def and init pointers, the ASCII name of the symbol, and
the type of the symbol (translated to a character string via sym_type).

dynamo
This is the command module, entered from the command processor.

It is basically a dispatching module, calling the various phases
of the compiler based on the options specifiede It also processes
the command argument list, creates and truncates the working
sgaments, and initializes the working variables in the common
data segments.
Dala Bases
In general, each program has internal automatic variables which
are completely local in nature, and in general few in number. Most of the
data common to all phases of the compiler is held in two working segments
whiich are declared by the include files dynamo_1 and dynamo_2, and are
created by dynamo and the static external pointers pwi and pw2 set to point
to the created segments.,
The first work segment contains element varlables which are global
in scope, and a large area in which allocation of free storage is done.
The second contains an interleaved array in which all of the data which
is array-structured is kept. The reason that the array was interleaved is
to allow the working set of this segment to vary uniformly with the sizeof

the input program.

Description of dynamo_1.incl.pli

Work_segment_1 is overlaid on ¢ pd¢ dynamo_tempi_.

n_dev Number of device interfaces to be generated by codegenerator.
This nmumber is currently fixed at 2 but may be made variable
at some future time.

n_cst Number of entries in the constant table, work_segment_2.c_tab.

n_eqn Number of equations in the model.

n)sym Number of entries in the symbol table, work_segment Z2.sym_tab .

n_var Number of allocated entries in the cross reference bit arrays,
work_segment_2.crossv and work_segment 2.crosse .

n_err Number of entries which have been made in the (new defunct) error table.
This field is not currently in use.

sp Stack pointer (used only by lex_ and trans_).
tsp Stack pointer to tstack (used only by lex_ and trans_).

line_no Current source program line number.

1_run lex_!s opinion of the murrent run number. Used for synchronization.
t_eqn trans_'s opinion of the equation number.
t_un trans_'s opinion of the run number.

cc_code Maximum severity code of an error detected so far.

n_s These fiwe variables are all indexes into work_segment 2.order and
n_& are used to indicate what order equations are to be generated in,.
n_l See the piecture of the ordering table somewhere else to see what
n_r these variables are used for.

n_s

m_c:omp Extent of the ordering table, work_segsnet_Z.order .

first_run Set to indicate that the first run is in progress. This is an
indicator to dynamo_operators_$dyninit_.

lhs Set to indicate that parse is on the left side of an equation. Used
only by Lex_ and trans_.

Inext Next available character in the listing segment.
1seg Length (in characters) of the source segment.
pscurce Pointer to the source segment.

pobject Poinber to the object segment.

pertry Was supposed to have been a pointer to the entry point of the object
segment. Is not being used now since same as pobject.

pstack Pointer to the stack (which is in trans_ automatic storage).
So that lex_ can find it.

ptstack Same as for pstack, but for the error recovery stack tstack.

plist Pointer to the listing segment.

pr Pointer to the run table chain. See the picture of the run tables.
rptr Polnter to the current run table ebhry.

options The compiler options in use.

ocrav Used by the reordering phase.

area_a Used for allocation of based variables.

Description of dynamo_2.incl.pl1
Work_segment_2 is overlaid on ¢ pd¢ dynamo_temp2 .

c_tab Tabk® of all constants encountered in the dynamo source program
and the rsult of evaluation of all constant expressions. The variable
n_cst contains the maximum index used to date.

sym_tab The symbol table. Fields are used as follows:
nama The ASCII symbol.

iflag Pet to one when the variabbe appears in the initialization chain
from r_tab.rvars.

type The type of the symbol. Codes are as follows:

constant

auxiliary

rate

function

macro (not implemented)

level

supplementary

encountered in a $dev, and entered, but not encountered
in the program, so no data type can be assigned.

Do EFWND=O

croyus Index in the reordering cross arzays for the variable.

def Number of the equation where defined (until code generation)
0ffset within the stack frame (during code generation)
Index of the value for a constaamt variable (during execution)

init. Number of the eyuation where initialized. foodekocarteaonex

Crossv
crosse
degn
eqns
dsym
d=zar

eq_tab

oxder

L'"

Reofdering cross array, by variable (cross field of sym_tab).
Reordering cross array, by equation number (n_eqn).

Used in reordering.

Equation table. Usage: %_,/ ?

Used in reordering. ’

Used in reordering.

Pointer to the intermediate text blocks for the warimikikm.equation.
Indexes in eq_tab for the result of the reordering process. The

variables n_a,n_i,n r,n s,n 1l give indexes in order for the different
variable types. See the picture.

1

‘1

ngscriytion of dyqfno m.incl.p11
Fomats o&' ﬂxe ;ntemmte taxt blocks.

MATRII

(p line vf.th tv}o af'gumants)
ﬁunte b¥ock or null.,

erati n code | ?‘r this line
Type of operand 1 (sym_tab.type field)

Cee (v

/.”

Desieription of module dynamo

First off, we output a message to the user's console indicating
that we are working. Then, all of the options given are processed. We
make sure that at least one argument (pathname of source program) exists
and then process the 2nd through nth arguments, trying to match them against
the vdlid options in arg tab. For each one which was given, we set the
corresponding bit in arg bit. For options not recognizable, we call the
error handler to issue diagnostics. Then, the three temporary segments
are made by a call to make_seg.

We then process the pathname of the input program. We check
for the suffix .dyn and add it if necessary, and then call expand _path_
to get the full pathname. Then, we initiate the segment, and set the
appropriate variables in work segment 1. The remaining variables in the
two working segments are then initialized. The first r_tab is allocated
and initialized. If any options requiring the presence of a listing
segment have been given, then a listing segment is created in the working
directory.

After this point, a simple set of calls are made to the appropriate
modules of the compiler based on the success of compilation as measured
by cc_code, and the option flags. When compilation and execution are
complete, the code following the label quit terminates the source
segnent, sets the bit count on the listing segment and terminates it,
and then truncates the working segments.

Desicription of module dyn alm .)
— . oOuiWLl _co-vln -
o, dosonipfoon o the proadins dup_codigin)
This module is the means/whereby the dynamo object program is able to

make external reference The second word of the object program is

initialized with a pointer obtained via make _ptr to the entry

dyn_alm_$dyn_tv_, and the following calling sequence is used to
reference an external entry:

1xl5 offset,dl load the offset in transfer vector
sted sp/20 save return point
tra 2,% transfer indirect through saved pointer

to transfer vector

Within the transfer vector, the first instruction transfers to location
1 indexed by the contents of index register 5, thereby accessing either
an external symbol or an alm subroutine coded in dyn_alm . These J & L(Jw?
subroutines had not been coded as of May 1971. A

fz

Deseription of module dyn_trans_

TR

This module performs syntactic and semantic analysis. It uses
an operator precedence analysis technique to parse the input stream.

The top of loop is at bea, where the equation counter is incremented,
and a left pad is put on the stack. One token is lexed, and checked for
identifier. If not, then a syntax error exists. The next token is check for
"=f, If not, then one is inserted. Then, precedence andlysis is used to
determine where the reducible phrases are.

Semantics for constant operator constamt are to evaluate the
constant expression, placing the result into the next available spot in
c_tab, and reduce the source. When a constant_variable = constant is
recognized, an rv_tab is allocated and added to the chain off r_tab.rvars,

and initialized so that the constant variable will be initialized at run
time by dyninit_.

’ \N For arithmetic operators, the routine im iop allocates and chains

ab matrix line block and fills in the appropriate fields. If the
operator is assigmment, then end of statement has been reached and cleanup
occurs.

Unary minus operations are accomplished by addbdg a unary minus
matrix block or in the case of a constant placing the negative of the constant
indicatikd into the next c¢_tab location.

Exponentiation is handled as a constant evaluation if possible,
or i function-call matrix is allocated, and initialized. The name of the
function invoked im "**exp". For function calls, the appropriate function
call matrix line is allocated, and initialized.

When the stack is to be cleared after the end of a statement,
the variables t_run, t_eqn, and 1_run are examined and set for synchronization
with lex regarding end of statement.

?

!

Description of module dyn lex

Dyn lex_ has the function of returning one lexical token on
the syntactic analysis stack when called at entry point dyn lex . It
must be inltialized via a call to dyn lex $setup_ first. It will also
process control statements in general by modifying the run table chains.
token, type, andname
A lexical éoken comprises a iypmpromiwramboumm cell, The following

codes are used:

token iymm = 0 ** 1% 2/ 3+ 4 -
5= 6 un- 7 8 9
10 (1) 12 13 idn

type (for token=13)
0 o 1 «k 2 .Jk 3 Jkl
4 nosub 5 const 6 matrx

name (for token=13)
for type=0,1,2,3,4 ~ index in sym_tab
type=5 index in c_tab
type=6 matrix line number

(The token=6,8,12 and type=6 indications are set only by dyn_trans_.)

The internal procedure endline is called when a newline character
is encountered. It lncrements the line counter, and outputs the line just
completed to the listing if a source listing has been requested.

The internal procedure nextokn returns the next token to the caller
(either lex or ctlproe) as nptr, mmod, and ntyp. The rules are as follows:
if the bit eof is on, then return. Skip all blank, tab, and ndwline characters
before the next meddamiomiarraxkar significant character. Set nptr to point
to the significant character. If this character is numeric, then the token
is a2 numeric item. If a special character, then the token is an operator.
Otherwise, it is an alphabetic item.

For operators, the special cases "k*", M;=M"_ and comments are
recognized. The handling of each of these is ralatively straightforward.
For single character operators, nmod will have already been set to the token
field above,

Numeric items are delimited on the right by a special character,
blank, tab, or newline. Alphabetic tokens have the same restrictions, except
that the time subscript has to be checked for and returned as mmod.

A
The n# mainline code checks if anything has been placed on the
temporary stack (trans_ can place tokens on this stack if it wants to insert
a token for error handling.) If so, then this token is returned. If
a $run; statement has been encountered, a right pad is returned, or if physical
end of data on the segment has been reached, a right pad is also returned.
Otherwise, a call is made to nextoksm to mum get another token, and the
processing depends upon the type (operator, numeric literal, identifier).

For operators, the flag lhs (left hand side) is set or reset if an
¥=" or ®;" is reached. If the "$" character occurs, then ctlproc is entered

to process the control statement which follows. If the construction ;=%
occurs, this is returned as token=35,type=1, to distinguish from "=", which
is returned as token=5,type=0.

For literals, the character string token is converted to floating
point and stored in the next availabad c_tab position, and returned as token=1 3,
type=5, name=index in c_tab.

For identifiers, the symbol table must be searched to determine
if the identifier already was recognized. If so, then token=13, type=some
furction of the time subséript given by tp_tab, and name=symtab index.
If the identifier must be entered, then the symbol table entry must be 2
initialized, and a slot allocated in the gse reorde array. -
The pointer n_var is updated to indicate %Io_c‘iﬁsgnfmw_ﬁﬂex in
crosse(*) is stored in sym_tab.cross. The cross arrays are updated to

indicate usage on the right and left hand sides, and multiple declaration
and initialization are checlelfor. The token is then added to the stack.

[

The routine _qj'&p}:é/c,.processes all control statements. The variable
ntoken will contain the verb fomm} (run,dev,spec).

For a $run statement, a check is made to be sure that the dt and
length fields are filled in for the previous r_tab, and that some $dev
statements were supplied, and then a new r_tab is allocated chained and
initializeds The input stream is then flushed to the next semicolon.

For a $spec dtw,length=; statement, the routine kw _parse is used
to obtain the parse of the keyword expression and then r_tabe.dt and r_tab.
length are filled in with the user!s values.

For a $dev unit= outper= idn= statement, a dv_tab is allocated
and added to the device chain for the run. For each identifier specified,
a pv_tab is allocated and chained to the newly allocated dv_tab. If an
identifier which has not yet been encountered is used in a 'idev statement,
it is given a type of =2 so that a type conflict diagnostic will not be
produced, and a contextual type can be assigned later when more information
is available. The dv_tab is not chained to the r_tab until all parameters
on the statement have been scamned so in the event of an error no effect
will remain, 9

The routine kw _pa’rse uses an 1r(0) parse (DeRemer's thesis PhD MIT)
using an encoded finité ¥tats machine to parse the keyword control statements.
Its operation is rather straightforward.

Deseription of module dyn_sort

This module uses the reordering cross arrays crosse and crossv and the
array order(*) to produce ant indication of which equations are dependent
upon one another and therefore resolve the order in which the equations
should be compiled. The groups are taken in the order supplementary,
auxiliary, initial value, levels and rates. The operation of this module
is extremely complex and it is recommended that the author, John R. Nestor,
be contacted if modifications are to be made.

Description of module dynamo_operators_

This module perfoms run-time services for the dynamo program.
The entry dyninit_ initializes the object program's stack frame.
The length cell is set to minus the mumber of iherations over the model 2

so that a test can be made by the object program via aos-tnz whether e
enough iterations have been made. The atl es(54) and (55) contain
the values of dt and time. These values are obtaine r the

current run. > km___/ ?
For the first run of a group.(,/the constant variables all have to !

initialized, and the sym_tab.init cell is set to the c_tab index for

the appropriate value. If not the first » only the non-permanent

constants are initialized from the rv tab’.chain; the others are initialized 6»
from the sym_tab.init field, so that permanent constants can be retained.

For permanent constants, the sym_tab.init field is reset so that subsequent

reruns will obtain the new value of the constant.

= 2
Finally, the v_tabs for each of the variables to be output are allocated
and attached to the appropriate pv_tab. >

s

The entry dynio_ collects the values of variables for later printing or plotting.

It loops over all devices active that is dv_tabs, and for each pv_tab extracts

the value of the associated variable (the index within variables(*) is contained

in the sym_tab.def field) and enters in the v_tab, S
e

<

/ J

Description of module dyn_codegen_

) This module is the dynamo code generator for Multiecs. It generates
GE64S5 machine language directly into the object segment. The object segment
is not in the standard Multics format, but rather depends upon support code
within the compiler for execution time services and its environment. The
input to the code generator is the intermediate language tree constructed
by the semantic translator and as reordered by the reordering phase.

Some pertions of code generated by the code generator are fixed in
nature, and are stored in arrays of static initial bit strings and copied
into the object segment with some minor filling in of offsets, numbers, and
so forth. Code which is generated for the matrix lines xbs in general more
variable and is generated by encoded macros.

Storage allocation is the first task performed by the code generator.
All storage for variables declared in the dynamo program is held in the stack.
Some storage is obtain after the initial 32 wori header for internal compiler
and run~-time variables, and then programmer variables are allocated beginning
at offset 54 from the sp.) For level and rate type variables, two words are
allocated, and for ordinary variables, one word is allocated. No particular
alignment of the two word allocations is observed.

Next, the working variables lbound(*),hbound(*), and iner(*) are
initialized to indicate what areas of eq_tab will be examined and in what
opder. The general form of the object code is shown in fig. 1.

The procedure prologue code is gmmerated first. The variable
-loc contains the index within object bits (which is overlaid on dynamo_object)
which is currently the first wmsed location. The procedurq prologue adjusts
the sp (performs a standard Multics save sequence), stores the current value
of sp in words 6 and 7 of the object code for dynamo_operators_, establishes
the value of bp by loading from word 4 and 5 of the object code where a
pointer to dynamo_temp2_ has been stored, and performs the first part of

the call sequence. It then calls the Oth entry in the transfer vector, which
is dynamo_operators_$dyninit_, which completes the initialization of the
object programs stack frame via reference to the run table information.

Next, code is gnerated for the initial value equations which contain
exprressions. This is done in the main loops. There are two nested loops.
One goes from 1 to 5 and references the lbound and hbound arrays; the other
goes from lbound(i) to hbound(i)e Within that loop, one simply chains from
eq_fab(*) whiks the chain pointer is not null.

Following initlal value equations, a short piece of code is generated
to transfer around the calculations which follow and to re-enter Just before
auxiliary equations are generated. This branch, being forward, is fixed up
after the lwvel equations are generated. Then, auxiliaries are generated,
followed by a piece of code to test for a print or plot time.

<

3

There is one word in the stack At offset 35 which contains fTags
used by the print/plot data collectiop“interface dynio . Bits 16 and 17
of this word correspond to devices 1 fand 2 and when set indicate that the
"outper" for this device has expired (and thet data should be collected anm
the current call to dynio_ for all pvars chained from that dv_tab. The
outper is maintained in words 36 and 37 of the stack and they are set such
that an aos on each loop will cause decrementing to zero when the interval
next expires. The code generated after rate equations does aos on these
words, tests for zero, and if zero sets the apppopriate bit in word 35.
Finally, the supplementary equations are compiled, and a test is made of
the device flags in word 35 to determine if either of them is on, thereby
indicating that data is to be collected for some device on the current
locpe If so, a call is made to dynamo_operators_g$dynio_ to collect the data.
Next, the generated code in epilogue_code adds dt to time to get the new
value of time, swaps the .j and .k index registers, inverts the Jk=bit in
word 35 (this smmxbit is used by dynio_ to figure out if .j or .k comes first
in the two-word level and rate slots), does an aos on word 3% which contains
the negativeof the number of loops over the model equations to be made, and
if this word has not been incremented to zero, branches back to the level
equations to begin another loop. If it is zero, then the standard Multics
return is made.

The processing performed for generation of code for matrix lines
1s now described. First, the opcode is extracted amd assigned to the variblbq
9p. If zero, then a funetion matrix line has been encountered. First, a
temporary is obtained to store the rasult in (rt). te(rt) is set to indicate
that temporary rt contains the result of the current matrix line. Then, the
accumulator is stored into a temporary if re is not zero, so that it can
be preserved over the call. Next, the name of the function is looked up
in func_tab, and the index is saved in fx for the 1x15 instruction.
Next, if the location counter is not even, a nop 0,du instruction is generated
for aligmedut. Next, a loop is made over all arguments to the function.
A search is made for the location of the argument in storage and an appropriate
address halfword and modifier bits are constructed (description below). An
eapap and stpap instruction are generated to get the address into the parameter
list for each one. Following that, an eapap and stpap get the address of the
resgult temporary into the parameter list. ixkaxx Next, an eapap instruction
loads the aggress of the parameter list into the ap, and a tra branches around
it. Following the parameter list, an sted and tra 2,* get through the transfer
vector to the desired function. This completes processing for function ealls.

If not a function matrix line, then there is at least one operand.
The first operand is located by noticing what the t1 field of the matrix line
contains. If a 6, then it is a matrix result, and is either in the a-register
or in a temporary. fThe bit opinir is set if op! is pot in a register. The
opladdr 1s set to the offset in the stack of the temporary where it is stared,
and opimodifier is set to zero so that no address modification will be performed.
Opitemp is set kim to the numberof the temporary so that it can be redbesed at
the end of generation of this matrix line (it cannot be released now;in the
eveni); another temporary is required during the generation, it would overlay the
data).

If a constant (type 5), then the offset from the object-time
contents of the bp is determined via the rel function, and opladdr is
sete Opimodifier is set to zeros, and opinir is set to indicate not in a
register. Otherwise, the operand is a programmer variable, and the
field sym_tabe.def will have been set by the storage allocator to the offset
of the allocation within the stack. Opladdr is set to this address, and
opimodifier is set to hbe appropriate address modifier (0 for an ordinary,
x1 for a «J, and x2 for a k). The array (typ_mod) makes this comversion.

If the matrix line is a unary minus, then the operand is
loaded if not in a register, and thefneg instruction generated to reverse
the Signo

If not a uminus, then the second operand is foundas for the first,
and. the corresponding op2... variables set.

For an assigmnment matrix block, if the pperand is not in a register,
it is loaded, and then a store instruction is gmmerated to stors the data
intothe new assignment.

For arithmetlic operations, the machine instruetion generation
depends upon whether the operands are in registers and whether the operation
is a commutative one.

For nither operand in a register, a (store) load operate group
is gemerated. The array (arithops) contains the opcodes for the four insbructions
(fad, fsb, fmp, fdiv). For one operand in a register, if the correct one,
or if the operation is commutative, then the correct pperation is generated.
If not the correct one, then a store load operator group is generated.
IXX The variable r¢ is set to indicate that the AC contains the result of
the current matrix line, and the next line is processed.

Cleanup for the current line consists of resetting flags, and
freeing temporaries where indicated by the opxtemp settings.

Ii
Z <
INTERMEDIATE LANGUAGE K‘ . ;

The intermediate language [tree is a series of threaded/lists, one per

egyation, chained fw. The array grder(*) indicates in what
orcder the equations to be compiled, as given in the dlagram.

There are three formats of intermediate language line blocks. One is
used when a binary operator is indicated:

2 chain ptr,

2 op fixed bin, Yas
2 t1 fixed bin, /\W
2 op1 fixed bin,

2 82 fixed bin,

2 op2 fixed bin;

del 1 matrix based, ‘é}

A second is used when a unary operator is indicated:

del 1 matrixi based,
2 chain ptr,
2 op fixed bin,
2 t1 fixed bin,
2 op1 fixed binj

A ihird is used for function invocations:

del 1 fmatrix based,

2 chain ptr,

2 op fixed bin,

2 name fixed bin,

2 n_args fixed bin,

2 arglist (i refer (n_args)),
3 type fixed bin,
3 narg fixed bin;

The type and narg fields correspond to the t and op fields of the previous blocks.
The name field is a unique identifier assigned to a function name, and 1% the
inclex of the name in the symbol table.

The op field is as follows:

OoOnEFLWN=O
gﬂl-l-*g
3 g
i Q

=1

The type fields are as follows, with the operand field corresponding:

type = 0 oJ name = index in symtab
1 ok 1t
2 oJk '

3 k1 st

6

ordinary
constant (literal)
matrix result

index in c_tab
line number in this equation.

-
&

“

C (o

4
R)

 —

r—
Ve Q\o\ - GeX

e{ el
Q{ o\ ‘ﬁ*’“

el el
('“‘) U\V\& .
Lot

leded (L) ey

bwtiiemy ()
s

o\ﬁf\l, ?,l\hs‘
(&)

i‘.‘& v e 3k on
WW\"“‘ Yy
57

g 1

i - Qwabore

Cen \‘*‘\\"

AL, e wed

L

NI YRS TATE

GuveoR 3 A S

L!'\“)%:i Yo

et TS

" o ey o

[AP1R ——] cuawt
4%
lewva o
N\Le RU_10G
fdaes Jguma N,
DN es N,
Stwmn
(¥ 4
DN-1Rg
N —
wwnid
Qwﬂ"{l\
RSy
1S Pl
> (MPad
ALTLE > Neyr
| Sgec | Cegek
S‘QA

AR

14

;;/ AV
CoDE 5 STQLH~(Ex | STHck-TRAN S I N TR Op&’a.fe/;fr _
0 e xx Funclen Gl |
! S - [% ot
: /o / / ;
3 i + #]
y - _ _ i
3 = = =
4 - _ .
7 9 , ‘
€ F Sof
7))
[o ((
)))
12 £oF £ ol
3 //,éMrf ~MrgER | papz- /yuﬂggr(-/mrﬁi

§ ’;’v"“""".”‘g‘ oy v o ae

Erter e = sy e

I~ sin8oL T 90LF

Ocl) S TAR(ARSI s) C’T'L}_
: > MG ME CHNARK /.?2)) /me: m(/))
2 TVPE Prarp grw(12) y
2 (oS PreEp s (1),
2 OFF FIréo grv (12,
2 THIT [IAE0 Bz /t_r)/*

[VOEY => Dece #H LD BIN(1S) STA ree
42”‘)‘{5 - I;‘IJQ*]/r} CT‘O\Q‘(E OF/:SET | F/fo/i/ Cfaff
(' O - okUIrARY) P {M o0 ,O0O
XA S K
2 e (. /(l‘

QFF - FAwv g Jdefiat in 07 D - undefined
TMT — Eqr# (nite 2ed i 2 O - yy c'/;éfa.//'zej
LRAL = YRUE Lay GF cuAWED fox RERurs (7's)

TyPE O- OROIVARY ,

|- level TUE Auxtioeres -
Sk Tas ——s 3~ Fuytis
(f‘ /V}ﬂc'eo
S- W LE;/EL
6~ Supytasierils Supplomentury
7 sET v sofl

Se€ h [fex

[7/A MATRIAX
Der | wmATFrx QASEO (MPTK))
2 cURTH PT@/
> 0P pryEb Lz (15))
2 Tl Frypo bzr (18]
20F FryEp brn//,;)/
272 ATAED Gro(15) /
2 OFf: [STAED s la")/'
Ocl. | paT#cx[BASEo (M /rf(‘)}
2> CHary FIR ,
2 0P fryso erpf /y)/
2 T freen 81 (15),
2 ofl Rraep Efﬂ’ﬂf}/'
Ocl | FmaTeRIX BASED (MFTR))
2 cHHEN PT f)
2 oF Frasl Grw(ils))
2 MAME [rrany 62'//(#)/
2 RARLS Frweb wIH,
2 AReLST (W REFER(# AR6s))
3 TVPE roxz0 gon(is),
- 3N Foxer g1

Urnary —

FypEor/s

oL AREAN AKER (AMSrze) Ty ;

ocl ¢ PIK GR<ED (CRATA)) ;

oP -~ See
W’QME - E‘)JQ,(

parT L
i SYM_TAg oF

FuncTroy NAME

BahS ~ WMuMBER oF 4846 uMENTS
STAKk, TrrPE STACK. W AME
!ry/”E) TI) T2 OF// 0"’21/1//»’4’6
e . |
/ .K Tyoel rp SInTAS
2 AL |
3 LKL
g ¢ matiers KEswT MmATRr BLoc(#
&9 OKDLWARS VRFEGUE| THOEY 1y /M TAZ
é 35 CoNSTHNE LIOFY ry c_THG

¥ stAK
DCL | TR (paxs) cT'L)
2 7o WEwy FxEp g (1 _r)
2 TVFPE [Zrx€0 gralis)
, o AME szven Bro/ () /f)j

1/ X —> 0cl 5P PriED srp(u) — STATIC

TokKEN — SEE PART [
TYPE NAME = spr parxT T

