REPORT ON THE IMPLEMENTATION OF LISP FOR MULTICS:
SUMMARY OF THE RESEARCH CONDUCTED IN CONJUNCTION WITH COURSLE 6.681

Il

Adviser: Prof. R. M. Graham
Student: John Linderman

3

The goal of this project was %he development of a general
strategy for the implementation éf the LISP programming
language under the MULTICS opera%ing system.

I felt that one reasonable apﬁroach to the project was to
(1) Identify what constitutés a "LISP system", independent

of machine; then ’

(2) Determine what impact t%e peculiarities of MULTICS
would have on this ideal LISP system.

Té‘this end, I first studied the formal LISP language,
extending the introduction to thé language I had received
earlier in the term via course 6L539. When I felt that I
understood the essentials of the:language per se, I turned
to the study of several operatioﬁal LISP systems as described

in "The Programming Language LISP: Its Operation and
1.

Applications"

My introduction to MULTICS was through a series of FJCC

: 2.
reprints, the "ACM Symposium on Operating System Princinles™

and the first three chapters of a guide for MULTICS subsystem
weiters.?* Before detailed implementation can be initiated,
surther research into the MULTICS system and the GE 645 will
s5e required. However, I suspect that the "spirit of MULTICS"
¢ well represented in the above:references, and it is this
spirdt that should most influence the development of a

eneral strategy.

w0

The following is a report of my conclusions about the
2ffect of the MULTICS system [which must be considered untouch=-
able] on the_ implementation of a LISP system [which can, and

really must, be tailored to suit our needs.]

3.

"LISP“, of course, 1is an acrdhym for list processing. It
sihould come as no surprise, theﬁ) that fundamental to any
LISP system'is the structure called a list [or, more
gencrally, an S-—expression.] A Hist is actually a trec of
substructures which I shall refer to as LISP cells. The
basic property of a LISP cell is\its ability to identify
two other such cells, the so-called CAR and CDR of the cell.
In éheory, any configuration of memory registers which enébles
this pointing could lead to an operative LISP system. In
practice, LISP will be devoting much of its effort to the
construction and processing of lists, so it is important
that the éoﬁfiguration be, in some sense, "natural" for the

machine with which we are dealing.

While the choice of internal fepresentation for LISP cells
will be vital importance in any detailed implementation, I
would like to put off the decision, at least for the time
being. I do this (1) because most of the.interesting
problems in the implementation»arise guite independently of
the decision, and (2) since my eXposure to GE 645 machine
language has been limited to the subsystem writer's guide,

7 doubt my qualifications to maké a good choice. I will
asgsume in the following, then, that some adequate choice

has been made.

The virtual memory feature of MULTICS appears at first to

be a big bonus. In most LISP systems, a fixed supply of LISP

9]

ells are initially available. If and when this supply is

cxhausted, processing must be suépended. A reclaimer or
"carbage collector" is called toirestock the supply with
cells that are no longer being used. If our representation;
of LISP cells enables us to specify segment as well as word
number, MULTICS provides us withian effectively limitless
supply of cells. Perhaps we can;do without the garbage
collector, the writing of which is usually a major part of

tne implementation process.

Unfortunately, this is too good to be true. Paging, the
mechanism which lets us pretend we have unlimited space,
introduces some new problems. To see this, suppose we have
a "cell manager" whose job it is to honor all requests for
LISP cells. The manager presumably supplies cells by
preparing contiguous areas from a data segment. Over a
period of time, the manager is likely to receive a sequence
of requests like

40 cells to put a labeled function on the argument list.
30 cells for some new atomic symbols just read.
6 cells for bindings on the argument list.
1 cell for a CONS
8

more cells for bindings on the argument list.

v - .

ho consequence of this manner of cell distribution is that

cezlls in a single S—expréssion may lie in a multitude of

"

zges. While this may present n§ difficulties in theory, it

may considerably degrade performance. As a list is processed
sequentially, missing pages must’be retrieved from secondary

storéqe. This is a relatively slow operation'and will become
pa“ticularly painful if the retrieved vages must displace

other pages to be referenced.

One¢ hope for reducing this lo§s of efficiency is a process
called "unraveling". Basically,funraveling an S-expression
consists of copying it so that the LISP cells in the exprcssion
occupy a minimal number of pages; Future passeé through such
compacted S-expressions should thus be more efficient. Thé
basic simplicity of this processibelies a number of
difficulties. One problem is "What do we unravel?" If we
unravel an S-expression that is gontained in a largef S—
expression, we are wasting time.; Assuming we eventually get
around to unraveling the larger expression, we must recopy

) Wi
the subexpression. We are also wasting time if‘unravel an
S—expression which will not be uéed again or will be used
only once. Unraveling is most profitable when applied to
lists constucted over a long period of time and subject to.
frequent scanning. The argument list in an interpreted
system 1s such a list. It is relied on so heavily that
serious consideration should be given to supplying it with
a storage manager and data segment of its own. Allowing the

aser to identify such lists could aid the unraveler in

cheosing wisely.

Lnother problem is "When do we unravel?" The timing is
not so obvious as it was with a garbage collector. If we
unravel too often, we will get no more processing done than
we would if we suffered the missing page delays. One -
intricueing possibility opened up by MULTICS is the parallel

operation of LISP and the unraveler. This would mean that

some care would be necessary to assure that LISP did not

alter the structure of a partially unraveled S-expressiosn.
I7 we have a few unused bits in our representation of
LISP cells, this could be accomplished by setting flays

in partially compacted expressions. S

The actual processing of lists can take place in eithcr
or both of two modes. Processing can be directed by functions

which are themselves S-expressions, interpreted by the LISP

)

(J.X

e

H

systém. When a function is invoked, its variables are pail
with ﬁheir current values on a large list called the arcument
list or A-list. Evaluation involves searching this list to
f£ind the most recent "binding" of the variables involved.
Interpretation and A-list searching, while they are wonderfully
general, are quite slow. It is also possible to translate
func¢tions from their S—expressioh form to machine language
subroutines. Variables "local” to such functions are

assigned to specific locations so the A-list need not be
searched. This, combined with the direct execution of

functions, considerably hastens processing.

If one is going to have a com@iler in the LISP system, it
iz certainly tempting to observe;MULTICS standards for trans-
lators. Doing so facilitates such advantages to the user as
the development of a LISP library of functions. The implemen-
ter also profits. ©Not only are pure procedures "automatically"
recursive, the use of the process stack relieves the LISP
storage manager of the burden‘thét the pushdown list represents
in common implementations. By preserving standard linkage‘

conventions, we may even call procedures written in other

languages. If this is to be a useful ability, we may wish

S 1

to choose the internal representétion of a LISP cell so that
it corresponds to a valid argument for more conventional
translators. Since it is the fubction of the LISP cell to
"point"”, this might lead‘us to répresent cells as pairs of

PL/I-style absolute pointers [ITS pairs].

Implementing an interpreter aiong with the compiler adds
considerably to the complication; In a mixed interpreter/
compiler system, we cannot assumé that every function is
compiied. This means that compiiing the standard CALL/RETURN
sequence is not adequate. Some &eans of determining the
nature of a function [such as chécking the property list of
the atom which is the function néme] is necessary to decide
the mode of execution, and an interface between the compiled
routines and the interpreter must be supplied.

There are some reasons for putting up with this extra
worki For example, without the interpreter, it is not
clear how to enable a computatioh to modify the definition
of a function. Whether such bizarre uses of LISP are -
worth defending may be questionable, but any reduction of
cenerality in the system is sure;to cause dissatisfaction

among LISP '"purists'.

Tn view of the version of LISP proposcd and the straverics

n

systoms, I can envisoge

cuployed by others implementing LISP

the following plan for implementation.

L.

L} Decide, using consideratibns of time, space, conpati-
pility with other MULTICS syskems, etc., the exact
representation of LISP cellsi The ability to flag cells
in some manner 1is very desirafle. In fact, if cells do
not include a few bits whoéesuse we do not currently
anticipate, we may be paying;a high price in later
fléxibility for economy of sﬁorage, Conventions on

the identification of atoms,;representation of numerical

atoms, atomic property lists and such like can then be

established. ‘ e

2) Design the garbage colleétor/unraveler. The problém
of what to unravel will depeﬁd on other phases of the
implementation, but the operétion should largely defined.
This phase will provide us with a check on the adeqguacy
of our choice for cell structure.

Special consideration in the design should go toward
making the unraveler able tolact in pargllel with LISP,

even i1if this cannot currently be realized under MULTICS.

3) Write the basic system fuctions such as CAR, CDR, EQ

etc. Because these functions are basic, they should be

coded in machine language.

4) Any time after LISP cell conventions are set, the
read and print routines can be written. Knowing very

little about I/0 under MULTICS, my only suggestion is

I

that these [and all other] routines be written in higaco

pasic machine language subroutines when detail demands.

5} Write the compiler. The ?ommon approach to this job
is to write a compiler in LISP which outputs an intermediate
language to be translated intb machine language. A
translator must then be written, but LISP can again be
used for much of the job. Thg compiler can then
"compile itself" on an operational system. The output
is translated to get a compilér for the new system.

The prime concern of our Eompiler shpuld be the
ultimate generation of pure procedures observing MULTICS
standards. The nature of the?intermediate language will
no doubt reflect this. It is conceivable that the
compiler could output a higher level language instead
of special S-expressions. Uniess our LISP structures
can be conveniently manipulated within the higher

language, this level of genefality may be hard to justify.

6) Write the interpreter and;the interface between the
compiler and the interpreter. The interpreter could be
compiled, but efficiency is a worthwhile goal here, so

careful coding may be warrented.

7} Write the "overlord" to put all the components

together.

[
.

5.

Biblio Is,

0
]
o

e}

v

ion International, Inc.: The Programrii.. Langquigs

Its Operation and IODL]CHtWOuS, MI™ Press

General Electric Company rupklnL of ¥JCC, Nov 30, 19065:
A New Remote-Accessed Man-~Machine System

MAC: ACM Symposium on Operating System Principles,
Association for Computing Machinery.

Elliot Organick: A Guide to MULTICS for Subsystem Writers,

MAC.

Computation Center and RLE: LISP 1.5 Programmer's Manual,
MIT Press.

