MULTICS PROGRAMMERS’ MANUAL ' | lisp |

| I

_ command
Development SyStem
12707770

Name: lisp

The lisp command invokes the Nultics LISP subsystem. This
is a Multics=compatible implementation of the LISP language, in
an interpretive environment for on=line use, -)

LISP is a simple recursive lanquage, well adapted to
problems requiring manipulation of sStructured data, wvhere the
structure of the data is more important than the data itself,
The Multics implementation is designed to be fast, vet not
limited by storage cabacity as many other lisp systems are’,

Usage
lisp ~-option=

1) option is a pathname for a _user-provided “saved
environment”, If not specifiead, the standard
LI5SP initial environment will be providea’
The user may save an environment for this
purpose from insige the 1isp subsystem. This
environment will be uysed to initiate the
user‘’s predefined atoms, etc,

Notes

In the following sections, the conventions ~and_ differences
of implementation which set Multics LISP apart from other LIsp
implementations will be described. The reader is referred to any
good LISP manual for further information, A ‘

An interim version of a Multics Lisp Programmer’s Manual is
avallable, The user desiring Specific description of the LISF
functions as implemented on Multics would be well recommended to
refer to this document,

Using_the Multics Iisp.Subsystem

Executing the lisp command initializes the user’s environment,
loading the predefined functions and initializing the
evaluator/supervisor, The Subsystem is designed to be
interactive, ang upon entering the subsystem, the user finds
himself +typing to the supervisor, which_is 9ust a direct
interface to eval. Sope typical console output follows:

(user input will be Preceded by an arrew - MDY
-==>lisgp

Multics Lisp Version 1

75 predefined atoms,

| 1isp | MULTICS PROGRAMMERS® MANUAL

-=>(cons (guote a) (quote b))
(aob’

==>(plus 1 2 3)
6

-=>(print (quote foo))
foo
foo
~=>(setq foo 5)
5
->f00
5 e
=-=>(putf (quote factorial) (quote (lambda (x) (conéd
~=>({zerop x) 1) (t (times x (factorial (plus x =1))1)))3)
(lambda (x) (cond ((zerop %) 1) (t (times x (factorial
(plus x =113))
==>{factorial 5)
120
==>(quit)
r 1850 4,79 28+389

The above example bpoints out several things not mentioned
before, First of all, the current implementation has an
eval=type supervisor, as opposed to the CTSS LISP whlch had an
evalquote supervisor, This supervisor reads 1 s-expression from
the current defaylt input Stream, evaluates it as a form. and
prints the resulting value, It should be noted that all
arguments to the functien at the top level of the form are
evaluated before applying the function == hence the explicit
guoting in the example above, L

As in several other large Multics subsystems, LISP has a
program_interrupt handler, which allows the uSer to quit out of a
poorly running Pprogram, and resSume at the too level by typina

“pi™ as the first command after a quit, This will restore the
bindings of the user’'s variables to their zeroOmlevel values,.

Input _Format for S~Expressions

Input format for an S=eXpression is much the same a§ in
other LISP implementations, except that commas are treated Just
as other alphabetic characters, thus £forcing atoms _to be
separated by spaces, The format for integers is an ootional
sign, followed by a string of digits, Floating noint numbers are
ag in pl1, except that at least one digit must appear on each
side of the decimal point, Character strinags are formated as in
pL1 also, inside double quotes, with the escape of a pair of
double quotes for a double quote within the string.

- There is an escape convention which allows the creation of
atoms with names containing sPecial characters. Any character
preceded by a "** will be treated as an ordinary alphabetic

ot e e S

MULTICS PROGRAMMERS® MANUAL | 1isp |

Page 3
12/07/70

character, and the "7" will be ignored, unless the "** character
appears in a quoted string,

The wuser will also note that as a matter of convenience,
excess right parentheses will be ignored by the read funct{ons on
input, This €aSes the burden of parenthesis counting olaced on
the user by the fact that Multics can only read whole lines at a
time from the teletype. In addition, 1lisp maintains an internal
buffer, so two sS~expressions to be evaluated may appear on the
game line, A newline 4n an s-expression will be treated as a
space, as will a tab, unless eXplicit escaping is done({see the
section on input/output).

Leaying_ the Lisp Subsy:stenm

As seepn 1in the above cOnsole example, the function "quit"®
with no arguments destroys the user’s current environment, and
causes the user to return to Multics commanrgd level

Ihe. Lisp_Languade._as_Implemented on Multics

The 1lisp 1language as implemented on Multics is intended to
be an upward compatible extension of LISP 1.5 as described in
Ihe LISR 1.5 Programmer’s_Manual by McCarthy et al, There are
several areas of essential difference, which shall be 4aiscussed
in the current section:

1. Character Strings have beepn added to the tvpes of
objects which may be referred to, and subrs to deal
with them have been defined,

2. Normal atOms (atomic symbols, mot numbers, character
strings, or nil) contain five value cells, instead of
the o0ld property list, (It turns out that one of these
cells is called a property 1list, but the nrlntnamea
functional value and abval will not aprear on this
list)

3. Because there is one value cell for functional
value, and because there seemed to be a need for more
general specification of properties like FEXPR,
EXPR,FSUBR, and SUBR, a modified concept of function
deflnltion has been introduced, 1In most cases the new
concept will not differ appreciably, exCept perhabps as
a2 notaticnal difference,

Character sSirinds_zs_0Obijecgts

e WO s s

| |
{ lisp | MULTICS PROGRAMMERS® MANUAL
i

| [

Page &

Multics Lisp defines character strings as a svecial data
type, Jjust as in most other Lisp sYstems. arithmetic values are
defined as special data types., This extension allows the user to
write programs which manipulate character strings much as he
would in PL/I or some other Procedure oriented language. In
other systems, much the same effect is obtained by special
functions which operate on the printnames of atomic symbols
(i.e«» pack, unpack, etc.); but these functions have the unwanted
side effect of creating what are called Truly Worthless Atoms on
the MAC/AT Lisp system (note that a truly worthless atom is one
which is not referenced by any list structure which is currently
active, except the oblist, and which has no property list or
values),

With these considerations in mind, the character strlnq data
type was defined, with its own set of functions., With reSpect to
most operations, character strings behave much as numbersz they
evaluate to themselves, andg while they do not in qeneral share
the same storage as other identical character stringss the
function eq compares character Strings by value rather than by
name(address),

Yalue Cells and. tbhe Pushdown_ List

As mentioned above, Multics Lisp defines an atomic symbol as
a 5S-tuple consisting of 4 value <cells and a vrintname. The
values contained in the value cells are as follows:

"1, The cuUrrent value binding of the atomic symbol
{variable).,

2. A "property list”, This can be used in any fashion
the user degires,

3, The current global value(APVAL), It is not clear
that this value, defined 4in LISP 1,5, is of any
practical use, However, there is no suitable way to
replace its functmon with respect to the evaluation of
atoms, so it is included for compatibility.

4, The current functional value of the atomic symbol.
This cell replaces the properties FSUBR, SUBR, FEXPR,
and EXPR of LISP 1.5,

A set of primitive functions is defined, wmembers of which
manipulate these value cells., ThesSe functions are described in a
later section. B

With respecgt to the evaluation of free variables in
functions passed as arguments to interpreted expressions. and
functions returned as values of other functions: the user 1is

MULTICS PROGRAMMERS® MANUAL ' | lisp |

‘Page 5
12/07/70

warned that the current Multics Lisp implementation does not
solve the so-called funarg problem, as value bindings are puShed
onto and popped from a stack as functiens are entered ang axited.
and a function does not carry the environment in which it was
created around with it.

Esnctional Yaliles

There are several types of objects which mav appearl as the
functional value of an atomic symbol, We may classify them by
several properties, fThe first prOperty is whether or not the
function is a compiled subr or an s-expression to be xnternreted.
This is determined by the type of the functional value, whlch may
be either a special data type called a subr value (that is in
fact a type of program link to be snapped with the aporonriate
compiled code), or an atom or an S=expression to be 1nterpretEG._

The second property is the Wway the function desires to
recieve its arquments, It eSsentially has the option to take a
certain fixed number of arguments (like an EXPR or SUBR in LIsPp
1.5) or a 1ist of all of the arguments presented to it In the
case of interpreted functions, there are a_ few more ovtions,
depending on the format of the formal parameter list 4in the
lambda or nlambda expression defining a function. More about

The third Property is whether or not the function wants the
arguments passed to it to be evaluated., The user of other Lisn
systems should note that this is a consideration 1ndependent of
the second property mentioned above, A subr value contains
information as to vwhether or not it exbects its arguments
evaluated, In the case of interpreted functions, a lambda
expression always Tecieves its arguments evaluated, and an
nlambda expression alwaYs recieves its arquments unevaluated.
Certain functions which are handled as special caseS in the
evaluator may violate this rule, and evaluate some Dbit not all of
their arguments (e,g. setq),

Lamkda.and_Nlambda EXpressions

The concept of lambda and nlambda expressions is a
generalization of the EXPR=-FEXPR property found in most other
lisps, and the Multics version attempts to he a qeneralization of
the limited, but similar, concepts of the same name 4in D,
Bobrow’s two documented Lisp implementations, In terms of the
user, pberhaps the facility is Only a notational change. but the
idea has some generality of its own.,

_ A lambda expression has the following syntax: a list of the
atom laphda followed by a formal parameter 1ist followed bY a

| 1isp | MULTICS PROGRAMMERS® MANUAL

 [—
Page 6

series Of n >= 1 forms to be evlaluated, the last of which will
generate the value returned bY the lambda expression When
applied, ‘)

The formal parameter 1list may be the atom nil, in which
case the function expects no arguments, orf else any atomic
symbol, in which case the atomic symbol iS Dbound to a list of
the evaluated arguments, or elSe a list of one of tyo flavors.
If the 1ist 4is of the form (a b ¢ 4) where a, b, ¢, and d are
atomic symbols, the function expects exactly four arguments, and
a, b, c, and & are bound to the values of thelr corresponding
arguments, This is identical to the LISP 1.5 definition,
Rowever, the formal parameter list may he of the form (a b ¢ .
a), in which case the function expects at least 3 arquments, and
a, b, and c are bound to the values of the first 3 arguments
respectively, but d4 is bound to the 1ist of the rest of the
evaluated arguments, or nil if there are onlv 3 arguments,

Nlambda expressions afe exactly sSimilar to lalmbda
expressions, except the atom plambda appears instead of lanbda,
and arguments to the function are not to be evaluated.

Exalipkes
The following may help the user understand the above
discussion. The function 1ist which evaluates its arquments and
returns a list of them may be defined as follows:
(lambda 1ist_of_args list_of_args)

The function progl which evaluates all of its arquments and
returns the first may be defined as follows:

(lambda (arga1 ., rest_of_args) arat)

