TARLE OF CONTENTg MULTICS LISP

I, Introduction
Ii. Using the Multics Lisp Subgvstem
IIL, The Lisp lLangiage as Implemented on Nultics
IV, Primitive Functions and Predicates
V, List Manipulation Fupctions
VI, Functions with Punctional Arguments
VII, InputyOutput Functions
VIII, Arithmetic Functions
IX., Character String Functions
X, Error Handling and Pebuagina Functions
XI, PFunctions Dealing With The Lisp System TItself
XII., Error MNessages

XITII., Implementation considerations

I, inkireduction

The Multics Lisp subsystem is intended to provide the User
of Multjcs with access to an ihterPretive LisP subsystem on that
operating system, and to provide the user of Lisp with a Lisp
system which has the ability to use the vower of the HMulties
operating system to its own advantage. Certain features stand
out in the design of this Lisp implementation, but none so mMueh
as the ability to create arbitrarily large 1ist structUres
without the fear of running out of room which is DPrasSent on
other systems in which lisp is implemented.

The efficiency of a value cell representation of atoms is
added to a unified storage scheme in order to hobefully proviae
the user with an inexpensive, Powerful landquade interpreter.

The current vetrsion 4iS somewhat incomplete, and Some
functions included in this docuUment have not been added to the
environment yet, ThHe sections of text which refer to
unimplemented~features will be surrounded by sSaquare brackets

(C1)+ These will be removed as the system is improved.

II,1

IL, Using the Multics:lisp-Subsysien

The Multics Lisp Subsystem is available to all users through
the "lisp" command, This command initializes the user’s
environment, loading the predefined functions and initializino
the evaluator/supervisor, The subsystem Lis desicgned to be
jinteractive, ang uponh entering the subsvyStem, the user fings
himself +typing to tHe supervisor, which is dust a direct
interface to eval, Some typical console output follows:

(user input will be preceded by an arrow = “"==3>")
“e>lisyp
lisp
70 atoms defined.
==>(cons (quote a) (quote b))
(a « D)
==>(plus 1 2 3)
6
-=>(print (quote foo))
foo
foo
-=>(guit) :
r 1850 4,79 28+389

The above example points out several things not mentioned
before, First of all, the current jimplementation has an
eval~type supervisor, as opposed to the ¢TSS Lisp which had an
evalquote supervisor., This supervisor reads 1 s~expression from
the current default 4input Stream, evaluates it as a form, and
prints the resulting value, It should be noteda that all
arguments to the function at the top 1level of the form are

evaluated before applying the function =~ hence the explicit

quoting in the example above.

I1,2
As in several other large Multics subsystems, LIss has a
program_interrupt handler, which alloys the user to quit out of a

poorly runring programs and reSume at the top level bY tyPing

"pi" as the first command after a quit, This will restore the
bindings of the user’s variables to their zero~level values.

The wuser will ealso note that as a matter of convenience.
exceSS Iight parentheses will be ignored by the read functions on
input, This ezSes the burden of parenthesis counting placed on
the user by the fact that Multics canm only read whole lines at a
time from the teletype, In addition, lisp maintains an internal
bufter, so tvo s-expressions to be evaluated may apoear on the
sameé line. A newline 4in an s-exPression vill be treated as a
space, as will a tab, unless explicit escaping is done{see the
section on input/output).

AS seen 1in the above console example., the function "quit"
with no arguments destroys the user’s current environment. ang

causes the user to retuirn to Hultics command level,

I1T.1

IIT. The Lisp_Languade as. Implemented on_tiultlcs

The Lisp 1language as implemented on Multics is intended to
be an upward compatible extension of LISP 1.5 as described in
The. LISP_ 1.5 Proqrammer’ s_Manual by McCarthy et al. There are
several areas of essential difference, which shall be discussed
in the current Sectioni

1. Character Strings have beep added to the types of

objects which may be referred to, and subrs to deal

with them have been defined.

2. Normal atoms (atomic s¥Ymbols, not numbers, character

strings, or_nil) contain five value cells, instead of

the old property 1ist. (It turns out that one of these

cells is called a property 1list, but ‘the prlntname.

functional value and aPval will not appear on this
1ist)

3, Because there is one value cell for functional
value, and because there seemed to be a need for more
general Specification of properties like FEXPR,
EXPR,FSUBR, and SUBR, a modified concept of function
definltion has been introduced, In most cases the new

concept will not differ appreciably, except verhaps as
a notational difference,

Character Sirinds..as _Qbijects

Multics Lisp defines character strings as a special data
type, Just as in most other Lisp systems. arithmetis values are
defined as special data types. This extension allows the user to
write programs which manipulate character strings much as he
would in PL/T or Some other Procedure oriented landguage., 1In
other systems, much the same effect is obtained by speclal
functions which operate on the printnames of atomic symbols

(L.e., pack, unpack, etc,), but these functions have the unwahted

I1z,2
side effect of creating what are called Trulyv Worthless Atoms on
the MAC/AI Lisp system (note that a truly worthless atom is one
vhich is not referenced by any 1ist structure which is surrentiv
active, except the oblist, and which has no property list or
values),

With these considerations in mind, the character string data
type vas defined, with its own set of functions., With respect to
most operations, character strings behave much as numbers: they
evaluate to themselves, and while they 40 not in general share
the same stdrage as other 1dentical character strings, the

function eq compares character Strings by value rather than by

name(address).

Yalue Celis and_the_ Pushdown. List

As mentioned above, Multics Lisp defines an atomic symbol as
a 5-tuple consisting of 4 value cells and a printname, The
values contained in the value cells are as follows:

1. The current value binding of the atomic svymbol
(variable),

2. A “property 1ist", This can be used in any fashion
the user degires,

3. The current global value(APVAL). It is not clear
that this value, defined in LISP 1,5, is of any
practical uge, However, there is no suitable way to
replace its function with respect to the evaluation of
atoms, so it is included for compatibility.

4, The current functional value of the atomic svmbol.
This cell replaces the Properties FSUBR., SUBR, FEXPR.
and EXPR of LISP 1.5,

A se t of primitive functions is gdefined,members of which

manipulate these value cells, These functions are described in a

IIT.3
later section,

With respect to the evaluation of free variables in
functions pasSeq a$ arguments to interpreted exPressions, and
functions returned as values of other functions: the user is
varned that the current Multics 1Lisp implementation does not
solve the so-called funarg problem, as value bindings are pusShed
onto and popped from a stack as functions are entered and exited,

and a function does not carry the environment in vwhich it was

created around with it.
Functional _Yalues

There are Several types of objects which mav apPear as the
functional vallUe of an atomjic Symbol, We may c¢lassify them by
several properties., fhe first property is whether or not the
function is a compiled subr or an S~exPression to be interoreted.
This L5 determined by the type of the functional value, which mav
be either a special data type called a subr value (that is in
fact a type O0f program link to be snapped with the aporonriate
compiled code), or an atom or an S~expression to be interpreted.

The second property is the way the function desires to
recieve 'its arqguments, Tt eSsentially has the option to take a
certain fixed number of arguments (like an EXFR or SUsR in LISP
1.5) or a 1ist of all of the arguments presented to it In the
case of interpreteq functions, there are a fev more options,.
depending on the format of the formal 6arame£er list in the

lJambda or nlambda exbression defining a function. More about

that later,

ITII,4

The third property is whether or not the function wants the
arguments passed to it to be evaluated. The user of other Lisp
systems should note that this is a consideration independent of
the second proverty mentioned above, A subr value contains
information as to whether or not it e¥pects its araquments
evaluated, In the cese of interpreted functions, a lambda
expression alvays recieves its arguments evaluated, and an
nlambda expression always recleves 4its arquments nnevaluated.
Certain functions which are handled as special cases in the
evaluator may violate this rule, and evaluate some but net all of

their arguments (e,g, setq).

Lapbda_and Nlamhda_ Expiessions

The concept of lambda and nlambda expressions is a
genefaljzation of the EXPR~FEXPR Proberty found in most other
lisps, and the Multics version attempts to be a generalization af
the limited, but similar, concepts of the same name in oD,
Bobrow’s two documented Lisp implementations, In terms of the
user, perhaps the facility is only a notational change, but the
idea has some geperality of its own,

A lambda expression has the followina syntax: a list of the
atom lawbda followed DY a formal parameter 1ist Followed by a
series of =n >= 1 forms to be evlaluated, the last of whieh wili
generate the value returned by the Jlambda expression vhen
applied,

The formal parameter 1ist may be the atom nil, in which

case the function expects no arguments, or else any atomic

I1T.5

symbol, in which case the atomic symbol is bound to a list of
the evaluated argquments, or elSe a list of one of two flavors.
If the 1list is of the form (a b ¢ 4) vhere a, b, c» and 4 are
atomic symbols, the fuhction eXpects exactly four arquments, and
a, b, c, and 4 are bound to the values of their correspondina
arguments, This 4is identical to the 1LISP 1,5 definition|
However, the formal parameter list may be Of the form (a b ¢ .
d), in which case the function expects at least 3 arguments, and
a, b, and ¢ are bound to the values of the first 3 arquments
respectively, but 4 is bound to the 1ist of the rest of the
evaluated argumenpts, or nil if there are onlv 3 argquments.

Nlampda expressions ale exactly similar to 1lambaa
expressions, except the atom nlambda aPpears instead of lambda.

and arguments to the function are not to be evaluated,

Exauples

The following may help the user understand the above
discussion., The function 1ist which evaluateS itS arguments and

returns a list of them may be defined ag follows:
(lambda list.of_args list_of_args)

The function prggl which evaluates all of its arguments and

returns the first may be defined as follows:

(Lambda (arg?l . rest_of_args) ara1t)

Iv,.1

IV, Brimitive Functions and._Predicates

The following is a 1ist of the primitive Functions definegd
in the Nultics Lisp initial environment, oOther functions defined

in the initial environment will be found in sUcceeding chapters.

gan»gdn.;adz.gQAr'gaa:.gddz = the standard definitions still hold
for these, but in the case of nil, all return nil.

cons - forms a dotted pair of its two arquments, gons(x,v) vhen v
is a list, appends x to the beginning of y.

Lplagca,rrlagd - these functions of two arauments actually modifv
the internal llst structure while vperforming an operation
essentially equivalent to (lambda (x ¥) (cons x {(cdr v))) in the

case of rplaca, and (lambda (x v) (cons (car %) ¥))) in the case
of rplacd,

guote,fungtion =~ these functions of one argument return their
unevaluated argument., The primary use for them 1is shleldina
theilr argument from evaluation before being passed to another
function, inn;&ign is equivalent to gugte at the present time,
and exists only for compatibility. Once aqaln the user is wvalned

that the current implementation does not solve the fuharg
problem,

cond ~ cond takes any number Of arguments, which shéulad be lists
themselves, and selects the first list wvhoSe Car evaluates to a
non=null value, then evaluates the cadr, caddr, etc. of this list
as forms and returns thHe value of the last form eValuated. If
the cond "falls through",i,e, the car of all the arguments to
cond evaluates to nil, then cong returns nil.

pLodn - this subr takes any number of arguments, evaluates all of
them in order, and returns the value of the last arguhent
evaluated., This functlon is a generalization of the function
prog2 found on mos&t ligp systems,

RLod =~ this function implements the program feature of lisp. It
takes at least 2 arguments, the first of which is a 1ist of
program variables which will be repound to nil at the entry to
the RpIQd. The rest of the arguments form a sequence of
"statements™ ang labels which Wwill be evaluated in order, A
“statement” is a non~atomic item, which will be evaluated in
prorer sequence at the time the Prog is executed., A label is an
atomic symbol, which labels the next statement in the llst. and
which may be used as the target of a goto via the gg functione.

Iv.2

gog = this function implements the goto in the lisp progranm
feature, Its argument must be an atomic symbol whic it will not
evaluate, but which designates the no;nt to which transfer of
control is to be made, Currently, no non- 1ocal goto’s mayvy _bhe
executed, This includes goto‘s attemprted in a hiagher anocation
of eyal or errorset than the one in which the label was defined.

return - this fupction causes a return from the prog which Vas

most recently entered, It takes 1 argument, which it evaluates,
and returns as the value of the DLQG.

get = this function causes the value of its Ffirst arqument to be
set to the value of its second argument, Note that the first
argument must evaluate to an atomic symbol, else this 4is an
error.,

setgd - like set, but its first argument should be an atom. which
is not evaluated, but instead the value of the second argqument
is assigned to be the value of the atomic first aragument’

setdg - like setq, but its second argument is not evaluated.

eyal =~ this function takes 1its single argument evaluated and
evaluates that, returning the resulting value.

cget - primitive function to set the apval value cell. It
evaluates both arguments, and places the value of the Second arag

in the abval cell of thHe atomic symbol which is the value of the
first ard..

putf - primitive function to set the functlonal value cell. It
evaluates its two arguments, the first of whlch must evaluate to
an atom, and then places the value of the second argument in the
functional value cell of the first,

Iv,.3
Predicates

eq - predicate which tests for identity between its two aras,
which are evaluated, Identity is equality of value for numbers
and eharacter strings, but for atomic symbols and lists, identity
holds for the same object only. That is, two lists which print
the same may not test identical,

null - evaluates its argument and returns t if argument = nil and
nil if argument not = vo nil,

atoll = evaluateg its aroument and returns t if araument value is
a number, character string, or atomic s¥ymbol, Otherwise, it
returns nil.

pamberp =~ evaluates its argument and returns t if its argument
has a numeric value.

fixp - like numberp, except Freturns t only for fixed point
{integer) values’

floate - 1ike g£ixp, but returns t only for floating point
values.

siringp -~ like £3iXp, but returns % omly for string values,

VII,.1

VII. Input/Quiput._Fungtions

The input/output functions of Multics Lisp deal with Hultics
standard I/0 streams. This allows the user tbv specify the
digposition of his output, or the source of his input, by the
current attachments of stream names known to the IO switch.
currently, input and output may pe performed by Lisp on anv
character oriented device, through any outer module the USer
might specify in an attachment, In particular, the user conSole
and ascii segments may be soufces (or sinks) for Llisp input
(output).

The set of functions which deal vith input/output aenerally
fall into two classes: functions which read (or write) and
convert the items read (written) into an internal representation
suitable for Manipulation by other Lisp functions, and Ffunctions
which control +the operation of input/output in general (i.e.,
perform attachmeptss, detachments. format controls etc.).

One other concebt needs to be mentioned. The 4input and
output functions of Multics Lisp either spPecify a stream name
explicitly (as in read.stream), or implicitlv (as in read). The
implicit specification of a stream is assumed to refer to one of
two default sileams. These streamg are initialized to the
streams "user_input"™ and “uSer_output" upon entering lisp from
Multice command level. The user may change the setting of the
default streams from inside LiSP, howevel, ThiS Proves most

useful when the user desires to load a set of function

V11,2
definitiors from an ascii file in his directory, since the input
to the evaluator/supervisor is taken from the default stream.
The user should also note that a stream name is svecified by a
Lisp character string value, or by the atom nil (which specifies

that the default stream is to be used).
Eungtions

rgad - this function reads one S~exPression from the currently
defined default input stream, It takes no araquments,

rgad.stream - this function works like read, except that_it takes
one argument which must evaluate to a character strina; this
specifies the Stream to which the function is to read,

RLiBL - this function takes one argument which is evaluated, then
printed on the current default output stream, followed by a
newline,

prilt.sirean - this function works like print , except that it
takes an additional argument which pust evaluate to a character
string; this will be tle stream to which the output is directed.

ratom - reads One atom from the current default input strean.
Right and left parentheses and periods are read as individual

atoms, The fupctjion takes no arguments and returns +the atom
read.

rateom._sirean ~ is to ratom as read_stream is to read.

erinl - this function works exactly as print, except no newline
follows the output,

prinl.siream - is to prin? as Print_stream is to print.

VII.3

Input/Qutput_control Functions

These functions control the operation of Multics 1ises I/0.
since Multics 1Lisp I/0 is kept as identical as possible with
Multics I/0, these functions can affect more than Jjust the I/0
performed by the user of Lisp, For instance, it is possible for
the user to closSe his teletype output, which essentially detaches
the user’s teletype from his current Multics process, This belna
a dangerous thing to do, the user is caytioned to use the control
functions descriped belovw with qreat care,

output = this function takes an argument Which evaluates to a
character string or nii, If the argument is a string, the old
name of the default output stream is returned, and the new value
of the default output stream is that of the arqument to outRut.
If the argument is nil, the current value of the default output
stream is returned. but no resetting is done,

inpug ~ this funct;on works like output, eXcePt that it sets the
default input stream.

infile =~ this function opens (attaches through the file pIM) the
file specified as the arcument to infile, for input, It should be
noted that the read,ratom,print, etc., functions will attempt to
open the strean specified'if it has not already been orened. The
value returned is the ¥alue of the argument if the attachment was
performed successfully, nil if not,

outfile - like infile, except that the file is opened for
OutP\lt .

closefile - this function closes (detaches) the specifiea loname.
If the argument is nil, the cuUrrent default output stream is
closed, else the one specified by the character string value of
the argument is closed. The value returned is either the name of
the Stream closed, ofF nil if the stream could not he closed.

opeghp.. = 1is a predicate which takes a character string arqument
or nil. If furnished with a character string, it returns true if
that string corresponds to ah open I/0 stream., If the arqument

is nil, it returns true if the current default output stream is
open.

VIT.H

printleyel -~ function which takes one araument, elther a number
or the atom nil. It sets the current printlevel to the value of
the argument and returns the old printlevel Value as an integer.
If the argument was nil, the Value of the wprintlevel is nat
changed, but its current value is returned.,

VIII.1

vITI. Apithmetic Eunctions

The arithmetic ¥functions defined on Multics Lisp take both
integer and floating point arguments, Most of them are defined
in such a way that if all arguments are integer, then the result
is an integer, unless the result grows to be > 2 ** 17 - 1, in-
which case the resuylt is converted to floating point, If not all
arguments are integers, then the result of a function is float.
Tn all cases the arithmetic functions evaluate their arguments.

Eunsctions

addl - this function adds 1 to its argument,
subl = this function subtracts 1 from its argument.

plus =~ takes a variable numper of arquments and adds them all
together

difference - takes 2 arguments and suptracts the second from the
first

tipes =~ ‘takes variable number of argumenRts and returns the
product of then all

gyotient - takes 2 arguments and divides the first by the second.
If both fixed point, then a fixed point divide is used, else a
floating point divide is used,

remainder - takes 2 arguments and divides the first by the second
as in gyotient. If both £fixed, then the number theoretic
remainder is returned. Else floating 0.0 is returned.

pinks - takes 1 argument and negates its value,

abs - takes 1 arqument and returns its absolute value.

Bredigates

S

zerop ~ returns t if its argument is integer 0 or floating voint
zero.

VIiz,2
dreaterp - true if first argument greater than second. Fixed

point comare is used if both arguments are fixed, else a floatina
compare is ysed,

igssp =~ like grea¥erp but true 4if first argument less than
second.

DipUsSe - like Zergp but true if its argument is less than O,
conversion Funciions

fix - takes 1 argqument and returns the value if the value is
fixed, or the integer part of the value if the value is float.
float - takes 1 argument, and returns the value if the value is

float, or the floating point number of equivalent value If the
number is fixed,

X, Error Handling and bebugging Functions

Errors are handled by Lisp in the following wav: 1) print
ofit an error message, 2) reset all of the bindinas of atoms to
the way they were at supervisor level, and 3) return to
supervisor level’

The user has the option to modify the above procedure by
the functions mentioned below, Basically., ohe may set the level
to which the errsr routine will return. Of course, the bindines
of variables will only be reset as far as the level of return.

Errors are normally Signalled by the 1isp system, or by Some
routine calling the function erfor, HoweVer, the user may
introduce a “Strong" error at any time, bv hitting the attention
putton on his console, and then typing "pi", which signals a
program dinterrupt to the lxsp' system. This is handled by
eXecUting the normal error procedure, but ignoring errorSets

(thus forcing the user back to supervisor level),

Errer._Handling.Eunciions

errorset = this is the standard function for resetting tha error
handling procedure of the interpreter, It takes 1 araument.
which ig evaluated, and evaluates it, after setting the level fﬂf
error returns, If no error Occurs, errorset returns thh (cans

result nil), but if there is an error, errorset returns nil
itgself.

ersetg - this fupction is like errorset, excePt that it does not
recieve its argument evaluated.

