MACSYMA USERS HALU AL

SEPTEMBER 1972

kichard A. Bogen
Hillary C. Capps
Richard J. Fateman
Michael R. Genesereth
Jeffrey P. Golden
Stavros Macrakis
William A. Martin
Joel HMoses

Eric Rosen

Linda Rothschild
Steve Saunders
Richard Schroeppel
Robert Siegel

Guy L. Steele
Barry M. Trager
Paul S. Vang

don L. White

David Y. Y. Yun
Richard E. Zippel

Work reported herein was supported in part by Project MAC, an
M. I. T. interdepartmental laboratory sponsored by the Advanced
Research Projects Agency (ARPA), Department of Defense, under
Office of Naval Research Contract NOCO14-70-A-0%62-0001.

Acknowledgenents

This manual was written by hichard Bogen witn tae
assistance of Jeffrey Golden and is based on a previocus rmanusd
by Richard Fatemen. [3] Chapters 6,11 and 12 wvere written oy
Jeffrey Golden, Chapter 7 is by Iric Rosen, Chapter O iz oy
Robert Siegel, and Chapters © and 10 are by Richerd iatenan.

Preface

This manual is an initial draft and is constanly unaergsoing
revision as new features are added to MACSYMNA. Any comments,
suggestions, criticisms, etc. are welcome and should ove sent to:

Jeffrey P. Golden ‘
Room 827

Project MAC

545 Technology Square

Cambridge, Mass. 0217¢

\NF\)—!

\)JUJ\N\N\N_,‘J olole]

¢ o

N

0\
Oﬂ\‘l\]\]OO\O\O\O\O\OU‘l\n\ﬂ\HLﬂ A28 118;

\

VIV O OOV LI LI W

w

Table of Contents

Introduction

General Information .
Syntax and Semantics of MACSYMA Yxpressions
.1 Numbers

.2 Symbols

3 Quoted Strings

.4 Names and Assignment
5 Operators

6 Functions and Arrays
3.6.1 Functions

%.6.2 Arrays

%.6.3 Subscripted Functions
7 Lists

g Matrices

IF Statement .
10 IOR Statement
11 Program EBlocks
12 Evaluation
13 Miscellaneous Hints and Facilities
Predefined Mathematical Constants and Functions
MACSYMA Commands and Switches
1 General Purpose
2 Manipulation
5«2.1 The Evaluation Command
3 Part Selection and Substitution
5«3.1 The Part Commands
«4 Graphing
5
6
5
7
.8

¢ o ¢ o o

L J

.5 List Handling and LISP-like Functions
.6 Rational Function Commands
.6.1 Generalized Rational Function Commands
Matrix Commands
gype Testing Commands

9 Utility, Input-Output, and Display

10 Debugging Commands

11 Pattern Matching and Related Commands
The Batch Commands

1 Introduction

2 The Simple Format

3 The More Complicated Format

.4 The BATCON Command
5
Ti

e ¢

Miscellany
ne Secondary Storage Commands

1 Introduction

2 Automatic Storage of Expressions
% Explicit Storage
4
T}

*

-

Saving a MACSYMA Overnight
ne Plotting Commands

¢,0 The Rational Function Commands
0,1 Pasic Commands
9.2 Contagious CRE Commands '
9.% The Rational Coefficient Command

0,4 Simple Extensions to Rational Simplification

10.0 The SOLVE Progran
11.0 Debugging in MACSYMA
12.0 The MACSYMA Editor
12.1 Introduction :
12.2 Entering the Editor ,
12.% A Description of the Commands
Appendix
Bibliography and References

1.0 Introduction
MACSYMA (Project MAC’s S¥mbol MAnipulator) is o larre

computer program written in the LISP programming lansuace [,
currently running under the ITS time sharing system [(.] cn & . .0
PDP=10 computer at Project MAC, M.I.T. It has capabiiities fcr
manipulating algebraic expressions involving constants,
variables, and functions. One can differentiate, interroin,
take limits, solve equations, factor polynomials, expand
functions in power series, plot curves, etc. In addition tacre
are facilities for memipulating lists, subscripted variziles,
equations, and matrices with many of the usual operations on
then being available. Facilities exist which permit the uner tc
extend MACSYMA by adding new functions and operations.

This manual is intended to be a complete index to ACGYIA
as of the date shown.. We do not pretend to discuss all of tie
issues involved in the efficient manipulation of algebraic
expressions nor is this manual intended to be tutorizl in
?ature. The novice may benefit from reading the [ACSYMA Primer

irst.

2.0 General Information

Commands to MACSYMA are strings of characters representing
mathematical expressions, equations, arrays, functicns, and pro-
grams. Extra spaces and all carriage returns are ignored.

Commands are terminated by @ or $. @ causes the command to
be evaluated and the result displayed. ¢ differs in that the
display of the result is suppressed. VWhen typing commands,
"rubout" or "delete" deletes (and echoes back at the console)
the previous character; 7? deletes the whole command, and causes
the line number to be redisplayed.

Lines are consecutively numbered, except that the input
line Ci will be followed by an output line (if one is generated)
named Di. The next input-output pair will be labelled C(i+1)
and D(i+1), respectively. The most recently computed expression
may be referred to as "g".

If one command produces several intermediate lines of
output, the labels will begin with an E, and the line number
will be incremented by one for eacn additional line.

Any command or expression can be referred to by its line
label. The use of C, D, and E as labels can be changed by tne
user if desired by resetting the values of certain variables
(refer to section 5.9).

Yy .
ISREE SI
LA

3.0 Syntax and Semantics of MACSYNA Ixprecsions

This section is intended to give the user a reasonuile juoc
of the expressions MACSYMA permits and their mearln{e. e
section should be read in conjunction with sections A 0 and Ul

3.1 Numbers

Numbers are either integers, rational numbers, cr {lontin~
point numbers. Integers consist of a string of ¢irits not
containing a period, rational numbers are the guotient of two
intecers and are written as numerator/denominator, and Tloating
point numbers are written as in FORTRAN, i.e. strinrs of disits
containing a period and optionally followed by an intecer
exponent beginning with the letter L. IHegative numbers bepin
wvith 2 minus sign. There is no limit on the number of dirits in
an integer or rational number but non-zero floating point
numbers must have absolute value between .14F-38 and 1.7F3Z and
are limited to approximately 8 digits precision. (PDP-10
limitations).

=17253733574534 6.023E27 -1.6F-19
3.1415¢ 227 —-32354 665557334 /66724255465544

3,2 Names

Names designate variables, functions, and arrays. A name
consists of a string of letters (including %) and digits of any
length beginning with a letter.

(Lower case letters may be typed, but they are immediately
converted into the corresponding upper case letters.)

X %PI LAMBDA65353TT3EPSILON A%123

Z.% Quoted Strings

A string of characters of any length may be constructed by
enclosing the string in ?°s. To include a ? or an € , # or § in
the string it is necessary to precede it with a \. Cuoted
strings are useful in printing titles for output or messages
such as those giving instructions for inputting data.

PRINT(?IS X POSITIVE\??)

pagre %

%.4 Names and Assignment

Names used as variables are assigned values by writins the
name of the variable followed by a : followed by an expression
representing the value to be assigned to the variable. A nome
can be assigned a new value at any time. The value of a
variable can be a number, a matrix, a list, a symbol, or anv
other MACSYMA expression. Some simple examples follow. lore
complicated ones will be presented later. (The conments in
parentheses are only for the reader‘s benefit and are not
actually typed to MACSYMA.)

line numbers expressions comments

§C1 A:16$ integer)
C2 LAMBDA: -3/37$ rational number)
X is assigned the value of D1)

gCB X:D1@
D3 16
(Note that every input expression Ci produces an outrut
expression Di whether it is displayed or not).
(C4) RHO:SIGMA@ (since SIGMA has no value 2t this time
RHO is assigned the symbol SIGMA)

D4 SIGMA

c5 SIGMA: .005% gfloating point)

C6 RHO@ RHO still has its old value

D6 SIGMA since it hasn’t been reassigned

a new one)

The MACSYMA variable VALUES is a list of all the variables
which are bound (i.e. have been assigned values) up to the

present time.

The special assignment cperator :: assigns the value of the
expression on its right to the value of the symbol on its left,
which must evaluate to a simple variable or array element. Thus
continuing with the above examples:

Cc7 RHO : : LAMEDA$

c8) SIGMA@
D8 =3/37

C9) VALUESe

DO [A,LAMBDA,X,RHO,SIGMA]

3.5 Operators

Fxpressions are constructed by using the operators + , - ,
* 3 o« 9/ 9 ¥ (or *) , and functional composition. The usage
and priorities from highest to lowest are:

pace 4

Operator Name Symbol Usage

factorial . postfix
exponentiation L infix
negation - prefix
divide,multiply / * . infix
add,subtract + - infix

Period is used for non-commutative product. It must be
preceded and followed by a space when any ambiguity can arise
with respect to floating point numbers.

Operators of equal priority are performed left to risht.
Parentheses can be used to change the order of evaluation. Also
functional application has the highest priority. Thus
SIN(A*X**Y /7)**2 means (SIN(A*(X**Y)/(Z)))*x2

In order to reduce the number of operators to be dealt with
¥-Y becomes X+(-1)*Y and X/Y becomes X*Y**(-1) in MACSYKA butl
this usually need not concern the user. ‘

3.6 Functions and Arrays
3.6.1 Functions

Functions of any fixed number of arguments can be defined
in MACSYMA by using the operator := . The left side of a
function definition consists of the name of the function
followed by the list of formal parameters enclosed in
parentheses. The right side consists of the function body.
Note that the function body is not evaluated at function
definition time, but only when the function is called. The
operator " preceding a name can be used to force immediate
evaluation of that name inside the body of a function
definition. When a function is called, any free variables in
the function body will take on the values which they have at the
time of the call, the formal parameters will be bound to the
actual arguments, and the function body will be evaluated. It
is permissible to define functions which call thenmselves or
which are recursive to an arbitrary depth. -

The MACSYMA variable FUNCTIONS is a list of all user
defined functions.

(C3) F(X) :=X*¥2+Y$

(c4) F(2)e

(D4) a4
(C5) Y:7%

§C6g F(2)e
D6 1
(CT7) G(Y,Z):="D4+Z**20

2
(D7) (Y, 2) =2 +Y+4

pagre b

§cag G(X,2)e
D8 X+ 8
§093 FUNCTIONS@
D9 [F(X), G(Y, Z)]

3.6.2 Arrays

Arrays in MACSYMA can have any number of dimensions. Array
elements are referred to by subscripted names. A subscriptod
name is a name followed by a list of subscripts enclcsed in
brackets. Arrays can be declared or undeclared. Declarcd
arrays are similar to FORTRAN arrays. The user declares the
number of dimensions and indicates the maximum value of cach
subscript. The system then allocates space for the entire
array. To declare an array the user types the command
ARRAY(name,dim1,dim2,...,dimk). This sets up a k-dimensional
array. The subscripts for the ith dimension are the integers
rumning from O to dimi-1. If the user uses 2 subscripted nane
before declaring the corresponding array, an undeclared array' is
set up. Undeclared arrays are in some sense more general than
Jeclared arrays. The user does not declare their maxinum size,
and they grow dynamically as more elements are assigned values.
The subscripts of undelcared arrays need not even be numbers.
dowever, unless an array is rather sparse, it is probably more
efficient to declare it than to leave it undeclared. The ARRAY
command can be used to transform an undeclare array into a
Jeclared array.

Array elements can be assigned values explicitly with the :
operator or implicitly by means of an associated function, and
the values assigned may be any MACSYMA expression. To
nderstand the implicit assignment we must understand what
MACSYMA does when asked to evaluate a2 subscripted name. MACSYMA
first evaluates the subscripts left to right. Then it does an
array access to see if the requested array element already has a
value. If it does, the value is returned. If it does not,
MACSYMA checks to see whether the array has an associated
function. If not, the subscripted name (with the subscripts
evaluated) is returned. (This is standard MACSYMA practice — if
there is no value for a name, the name itself is returned when
an evaluation is done.) If there is an associated function, the
parameters of the function are bound to tne given subscripts,
and the function body is evaluated. The value of the function
in stored in the appropriate array element and returned. Note
that once an element is computed by the associated function it
is stored so that next time it is needed it will not have to be
recomputed. A consequence of this is that unless the user uses
the REMOVE or REMVALUE commands to kill an array element, the
associated function will never be called a second time on the
same arguments. Thus the user should be aware that even il he
redefines the associated function, those values which already
oxist will stay around. The only way to change the value of an
coray element is to use the : operator.

These associated functions are defined with the :=
operator. Their definition looks exactly the samc as ordinary
function definitions, except that the parameters in thc lelt
side of the definition are enclosed in brackets instead of
parentheses.

The MACSYMA variable ARRAYS is a list of all the arrayc
that have been allocated, both declared and undeclared.

(C11) A[N]:=N*A[N-1]$
(C12) A[0]:1$
50133 A[53e

D13 120
(C14) A[N]:=N$

C15) A[6]@

(512) A6 6

{Note that the definition in C14 is being used
because A[6] had no value up to this time.}

20163 Al4]e@
D16 24

{Since A[4] was assigned a value as a result of A[5]
being computed, the new definition is not used.

3.6.3 Subscripted Functions (Arrays of Functions)

MACSYMA provides a very natural notation for subscripted
functions. They are defined as are ordinary functions, using
the := operator. The left side of the defintion however,
consists of the function name followed by the subscripts,
enclosed in brackets, followed by the arguments, enclosed in
parentheses. The subscripts (which are not evaluted at
defintion time) must be either all numeric or all symbolic. If
they are symbolic, they are treated as additional arguments to
the function.

§g18; T[1](X):=X!@

J

T (X) := X!
1

£c193 T[1](5)@
D19 120
(C20) F[I,J](X,Y)::X**I+Y**g@

(D20) T J(x, Y) ;==Y + X

?

I

vage 7

(¢21) F[2,B]}(C,3)@
(D21) C +3

The user should realize that MACSYMA handles subscripted
functions as a special type of array, not as functions. Thus
the user should never redefine a subscripted function without
KII1L"ing or REMARRAY’ing it first. If he does, he may find that
the old definition is still being invoked.

A subscripted function is actually an array oif {functions.
The subscripts pick out the correct function from the array.

The function is then applied to the arguments.

- 3.7 Lists

Lists are ordered sets of elements which can be any HACSTIA
expressions including lists. They are written enclosed in
brackets with elements separated by commas. There are functions
for many list operations such as deleting elements, selecting an
element, reversing a list, etc. These are described in section
5.5. Lists may be used whenever it is desired to evaluate a
sequence of MACSYMA expressions.

(C1) [X**2,Y/3,-2]$ (D1 exists even though it
| hasn‘t been displayed)
(C2) FIRST(%)*Xe |

§D2§ ‘ X3
c3) [A,D1,D2]@ -

2 Y 3
(DB) [A: [X ’ '3‘ s"'2] $X]

2.8 Matrices

Matrices are like 2 dimensional arrays but are treated
differently in MACSYMA because of special operations defined on
them. They may be constructed by using the command MATRIX whose
arguments are lists representing the rows of the matrix. (The
command ENTERMATRIX may also be used to construct a MATRIX. See
section 5.7).

The operators + , — , ¥ , . ,and ** (for raising to a
positive or negative integer exponent) may be applied to
matrices and have their usual meaning (note that A**(-1) is the
inverse of the matrix A but 1/A is not). If a matrix is
multiplied by a list, the list will be taken to be a vector. If
a matrix is multiplied by a scaler, the scaler will be kept
outside the matrix unless the command EXPAND is used (see
section 5.1 and example below).

An element of a matrix may be referenced by subscripting as
vith arrays. Many functions are available for operating on
matrices and are described in section 5.7. Some examples
follow: (D1 is the list shown in the previous section?

pare &

(c4) MATRIX(D1,[0,5/2,X],REVERSE(D1))e

* 2 Y *
¥ - Ok
* 3 *
¥* *
* 5 *
(D4) ¥ = X%
* 2 *
* *
* Y o
*.D - X *
* 3 *
(c5) 1+%[3,3]e 5
X+ 1

63 '
C6) D4[2,1]: -1/2%
(07) MATRIX([1’XJ’[”X12])@

Cox X*
(D7) * *
* o X 2%
(C8) DT*MATRIX([A],[B])@
‘ *BX+ A*
(D8) * *
#2 B A X*
(C9) 'TRANSPOSE(%)e@
(D9) B X+ A 2B - A X*
(C10) %*D7e
(D11) * 2 2 *

AX -BX+A BX —-AX+ 4 B
(c12) D7**(-1)@

*D - X%

* *

*X 1 *
(D12) >

X + 2

(c12) %,%=2,EXPAND@

nage 9

*1 1%
¥ -
*3 3%
(D13) - * *
1 =
¥ o *
*3 5 %

3.9 IF Statement

The szntax is IF logical-expression THEN expressionl IFLST
expression2. The result of an IF statement is expressionl if
logical-expression is true and expression? if it is false.
Expressionl and expression2 are any MACSYMA expressions
including lists, and logical-expression is an expression which
evaluates to TRUE or FALSE and is composed of relational and
logical operators which are as follows:

Name : Symbol Type

. greater than relational
equal to "
less than "
greater than n

or equal to
less than

or equal to
AND

‘YA" v

n

A

——
=y

& , AND logical
. 11"

3
" OR OR

NOT is also provided but as a function (not as a prefix
operator).

The relational operators all have equal priorities which
are less than the priorities of the arithmetic operators and
greater than that of the logical operators. The priority of AND.
is greater than that of OR.

The ELSE clause may be omitted but not in cases where the
IF statement is_expected to yield a value as in assignmen IF
statements may be part of other IF statements. Some examples
are given below.

(C1) FIB(N):= IF N=1 OR N=2 THEN 1
ELSE FIB(N-1)+FIB(N-2)$

gcz FIB(1)+FIB(2)e

203 FIB(3)e

§c4 FIB(5)@

3
o]

aoee 10

N

(c5) FETA(MU,NU):= IF MU=NU THEN MU
EISE IF MUDKU THEN MU=-NU

ELSE MU+NUS$

£C6g ETA(5,6)@
D6 11
(C7) ETA(ETA(7,7),ETA(1,2))€
(D7) 4
(ce) 1IF (w:FIB(7);>1o THEL [GeX*STH(X/W), INTFCOATH(G,X)]

FLSE [G:COS(X+VW),DIFF(G,X,2)]@ |

| X X X
(De) [X SIN(=),160 SIN(—) - 13 X CO3(—)]

15 13 13

EC93 IF 4+1>% OR NOT(5>=2) AND 6<=5 TEEN TRUE
D9 TRUE

3.10 TOR Statement

‘This statement is useful in iteration and is analogous_to
the DO statement in FORTRAN although it is much more general.
There are three forms the syntaxes of which are:

(a) FOR variable:initial-value STEP increment
THRU limit DO expr

(b) FOR variable:initial-value STEP increment
WHILE logical-expression DO expr

(¢c) TFOR variable:initial-value STEP increment
UNLESS logical-expression DO expr

The increment must be a positive number, but the initial-
value and limit may be any arithmetic expressions. Logical-
expression is as in the IF statement and. The function GO may
be used to transfer control out of a FOR statement (see section
5.11). If the increment is 1 then "STEP 1" may be omitted. The
iterated expression may be any single MACSYMA expression
including an IF or FOR statement. If the usery& wants to have
more than one exggession he may use the BLOCK statement (see
section 5.11). ther than explain each case some examples will

be given.
C1 FOR A:=3 STEP 7 THRU 26 DO DISPLAY(A)$
Oy A =<3
E2 A= 4
3 A=1
€E4 A =18
ES A =25

page 11

C6 S:0$
C7 FOR I:1 WHILE I<=10 DO S:5+I¢
D7 DONE .

(DONE is the value of a FOR statement. All statements in
MACSYMA have a value even if it is a trivial one.)

C8§ S@

D8 55

C9) SERIES:1%
C10) TERM:ZE**SIN(X)$
C11) FOR F:1 UNLESS P>7 DO
BLOCK (TERM: DIFF(TERM,X) /P
SERIES : SERIFS+EV (TFRI, %=0 * %)
(C12) SERIES@ ,
7 6 5 4 2

(D12) X X X X X
—_———— e e — 4+ X+ 1
9% 240 15 2

: The last example computes seven terms of the Taylor series
foer EXP(SIN(X)). Here %E represents the transcendental number
€. EV is a command which evaluates its first argument subject
to the conditions imposed by the rest of its arguments. .

3.11 Program Blocks

BLOCKs in MACSYMA are analogous to subroutines in FORTRAN or
procedures in ALGOL. BIOCKs are useful for grouping together a
sequence of related calculations.

e syntax is:

BLOCK([Vv1y...,vk], stmtl,...,stntn)

where the vi are variables which are local to the ELOCK and the
stmti are any MACSYMA expressions. If no variables are to be
made local then the list may be omitted but then any variables
used within the block will be identical to variables with the
same names used outside of the block.

The value of the block is the value of the last statement
or the value of the argument to the function RETURN which may be
used to exit explicitly from the block. In addition the
function GO may be used to transfer control to the statement of
the block that is labeled with the argument to GO which is an
atomic symbol. To label a statement precede it by an atonmic
symbol as another argument to BLOCK. For example :
BLOCK([X]yX:1,LO0P,X:X+1ye oe yGO(LOOP),...) . The argument to CO
may be any expression which evaluates to a label. For example
GO(IF X>Y THEN PLACE1 ELSE COMPUTEPLACE(X)). Going out of a
block causes the unbinding of all variables which were bound in
the block. Elocks typically appear on the right side of a
function definition but can be used in other places as well.

(C30) HESSIAN(F):=BLOCK([DFXX,DFXY,DFXZ,DFYY,DFYZ,DF2Z],
DFXX:DIFF(F,X,2 ,DIXY:DIFF(F,X,1,Y,1§,DFXZ:DIFF$F,X,1 Z51),
DFYY:DIFF(F,Y,2) ,DFYZ: DIFF(F,¥,1,2,1),DF2Z: I (1. 2,25,

RETURN(DETERMINANT(MATRIX([DEXX,DEXY,DFXZ],[I&%I,DEXI,LJfg},
[DFXZ,DFYZ,DF22]))))$

(C31) HESSIAN(XM*SHY*3-3%A%X*Y*L)9

3 2 3 2 2

(D31) - 54 A XYZ-5 A Y -5 A X
(c32) QUOTIENT(%,—54*A**2),Z=1@ﬂ .
p) p]
(D32) X + AYX+ 7Y

The above example computes the iessian of a cuoic curve
(The Folium of Descartes) which turns out to be invariant under
{his transformation since the result is of the same form.

3.12 Lvaluation

: In general whenever the user types in an expression (not
appearing in a function definition) it is evaluated once, i.e.
all bound variables and functions in it are replaced by tueir
values and then simplified. If it is desired to suppresc the .
evaluation of a particular variable or function it can be
preceded by a single quote, i.e. “. The fact that any
expression can be referred to by its line label implies tnat
variables such as C2, D1, or E7 when used in an expression may
have values automatically set as a result of a previous
computation. Therefore care must be taken not to use these as
atomic variables (those which stand for themselves) because taey
will be replaced by their values. Vhen referring to a past
expression it is preferable to use Di rather than Ci since Di is
already the result of evaluating Ci and there is no need to do
this again unless the values of some variables used in Ci have
changed.

A1l functions are either noun~-type or verb-type, most being
verb-type. A verb function is a function which attempts to
effect an application of the itself to its arguments and thereby
remove itself from the expression. FYor example, INTEGRATE is a
verb-function and ordinarily will attempt to perform an
integration. On the other hand, SIN is a noun-function, and
will not attempt to evaluate itself, although it will evaluate
its erguments. The EV command (see section 5.2) can be used to
evaluate an expression in a context which says that (for
example) all SINs should be numerically evaluated. That is,
selected noun forms can be converted to verb forms. Similarly,
if 2 normally verb-function is desired to operate as a noun-type
function, it may be so declared via the function NOUN. Thus
INTEGRATE, when declared a noun via the command NOUN(INTEGRATE),
would normally return an integral, even if the integration could
be performed. If the function F is a verb ‘F can be used as the
noun form for F. If F is a noun, ~°F (2 single quotes) can be
used as the verb form. If a verb-function cannot be evaluated,
os for example an integral which cannot be computed, it is
simply returred as though it were a noun—-function. If I is
already = noun, °F is the same as F.

pare 1%

C3 Y+1@

D3 ’

C4 X+3@

D4

C5 F(X)::(X+Y)*"X/2@

C1 X:2%

c2 Y X+X$
X+ 3

(

D5 F(X) ==Y+ X
C6) ‘DIFF(F(Z),z,2)e |
o
(D6) —_— (Z + X + 2)
-2
DZ

207; % ,DIFF@

D7 0

3,13 Miscellaneous Hints and Facilities

There are several uses of ? in MACSYMA: (1) ?? is used to
cancel a line typed to MACSYMA. (2) ?string? is used to quote a
string of characters as in printing a message. (3) “operator?
is used to refer to the operator in an expression such as the
result of PART(expression,0). |

The following characters typed while holding down the
control key have special functions:

G - enters top-level LISP after resetting all variables and
breaking out of all functions. It is not possible to continue
an interrupted calculation after a controcl-G, but typing
(CONTINUE) will return to MACSYMA.

K - reprints the current line. This is useful when many
rubouts have obscured the line.

L - clears the screen on Display consoles and does a
control-X.

'H - makes a "hbreakpoint® in MACSYMA and prints the time
used in the current computation. Control-H does not reset any
values. Altmode (or Escape) P followed by a space will return
to MACSYMA and resume the computation.

X - aborts a computation and returns control to top-level
MACSYMA.

D - causes garbage collection statistics to be printed out
each time a garbage collection takes place.[6,7] If the
percentages drop below 5% consistently, chances are that the
computation is too large for the MACSYMA system being used.

C - stops printout of garbage collection statistics turned
on by control-D.

W - stops printout at the console (the computation
continuves).

V - resumes printout at the console turned off by control-
\:‘] .)
B - seizes the lineprinter so that subsequent output at the
user’s console vwill be printed.

E - frees up the lineprinter which was seized by conrtol-P.

parse 14

A - similar to control-H except that MACSY!A has control at
this breakpoint. To exit type EXIT@.

Sonmetimes when a user gives a2 command the nmessage "...
being loaded" will be printed. This means that the commond used
is not in the initially loaded MACSYMA but is beings loaded in
now via the dynamic loader. Infrequently used commands are not
initially loaded into MACSYMA in an effort tc save space.

: When in LISP typing (CONTINUE) will return to MACSYIA.
Typing (SUPERVISOR) will also return to MACSYMA but will do =
KIIL(HISTORY) in addition. (see section 5.9).

nage 15

4.0 Predefined Mathematical Constants and Functions
. All of the functions mentioned below take one arrument (say
X) unless stated otherwise. Certain properties sre indicatec in
braces following each function.

Properties

N: the function can be evaluated for numeric
arguments by using the NUMER flag of EV.
(see section 5.2)

I: the function may be integrated.
ND: the function can’t be differentiated.

S: the function is automatically simplified
only for certain numeric arguments.
(1ike integers or special angles).

A: the function is automatically evaluated
for any numeric argument.

Constants

ZE is the base of the natural logarithm. It also serves as
the exponential function, i.e. PE**X is used for EXP(X). %PI is
used for pi and %I is the square root of minus one.

Simple Functions

ABS {A,ND} - absolute value.
ENTIER {A,ND; - largest integer <= X. _
SIGNUM {A,KD} - if X<O then -1 else if 150 then 1 else (.

Miscellaneous Iunctions

SQRT {N,I,S} - same as X**(1/2)
10G {N,I,5} - the natural logarithm.
BINOMIAL{X,Y) {S,ND} — X*(X=1)*...*(X-Y+1)/¥!
GAMMA {N,S} - the gamma function. GAMMA(I =§I~1)!
BETAéX,YZ N,S,ND} — same as GAMHMA(X)*GAMMA(Y)/GAMMA(X+Y)
FACT(X,Y) {S,ND} = X*(X=1)*...%(X=Y+1)
if Y is omitted then same as X! v
EULFR {ND,S} - gives the Xth FULER number for integer X.
BFRN {IiD,S} - gives the Xth BERIOULLI number for integer X.
The switch ZEROBERN éTRUE] if set to FALSE excludes
zeroes from the BERNOULLI numbers. :
PSI {IiD} - derivative of LOG(GAMMA(X)).

Circular Functions

cos {N,I,S; - cosine.
SIN {N,I,S; - sine.

TAN {N,I,S; - tangent.
SEC {N,1,S; — secant.
csc {n.s} = cosecant.

COT N,I,S}- cotangent.
Inverse Circular Functions

ACOS , ASIN , ATAN , ASEC , ACSC , ACOT
Hyperbolic Functions

COSE {N,3} , SINH {VN,S} , TAWH {W,5} , SECH , CICH ,

Inverse Hyperbolic Functions
ACOSH , ASINH , ATANH , ASECH , ACSCH, ACOTH

Examples
(C11) SIN(% PI/12)+TAN(g%/6)€]
(D11) SIN(e=—) +

12 SQRT(3)

§C123 % yNUMER@
nz2)

(C15) BETA(1/2,2/5)@ 5
SQRT(%PI) GAMMA(E)

-0.8361693

(D15) ;
GAMMA(—)
10
émeg % ,NUMER@
D16 3.6790924
(C19) DIFF(ATANH(SQRT(X)),X%@

(D19)

2 SORT(X) (1 - %)

Complex Expressions

page 16

Coln

MACSYMA attempts to simplify expressions involving %I

although it may not do quite everything the user desires.

Sometimes the required manipulation may be achieved by various

operations directed by the user as the examples below
illustrate.

(C20) (SQRT(~4)+SQRT(2.25))**2¢

2
(D20) (2 9T + 1.5)
50213 EXPAND(5)@
D21 6.0 %I - 1.75

§C233 EXPAND(SQRT(2*%I))0
D23 ST + 1

nDae

17

paze 14

5.0 MACSYNA Commands (Functions) and Switcnes (Varizvles)

Following is a list of all lACSYNA Commands divided 1rnuc
functionzl classes. Special variables are mentioned in tinc
description of some commends which affect their operatiorn.
Their default value is enclosed in brackets. ‘

5.1 General Purpose
MI(nl,n2,...) gives the minimum of the expressioans nl, nd,...
MAX(n1,n2,...) gives the maximum of the expressions ni, n2,...

DIFF(exp,vari,ni,...,vark,nk) differentiates exp with respect
to each vari, ni times. If just the first derivative with
respect to one variable is desired then the forn

DIFF(%zp,zgg) may be used. If the noun form is required

as, for example, when writing a differential equation),

DIFF should be used and this will display in a two

dimensional format. DIFF(exp) gives the "totel derivative",

that is, the sum of the derivatives of exp with respect to
each of its variables times the function DILTA of tne
variable. DERIVATIVEAEBREV [FALSE] if TRUE will cause
derivatives to display as subscripts.

DEPENDENCIES(f1,...4fn) declares functional dependencies used by
DIFF. Each fi ZT;1,n) has the format f(vl,...,vm) where
each §j (j=1,m) is a variable on which f depends. Thus
DIFF(Y,X) is O, initially. Fxecuting DIPENDENCIES(Y(X))
causes future differentiations of Y with respect to X to be
displayed as

DY

DX

Dependencies need not be declared when tney are given
explicitly in the expression as in DIFF(Y(X),X).

Sometimes the user may forget what functional
dependency relations he created for some functions. They
may be retrieved by using the command GETDLPENDS (see sect.

5.9).

GRADETF(f x1,...,xn),§1gx1g,...,gggxnz) defines the derivatives
of The functIon f with respect to its n arguments. That is,
df/dx1 = gi(x1), etc. This is needed when, for example, tne
function 1s not known explicitly but its first derivatives
are and it is desired to obtain higher order derivatives.

INTEGRATE(exp,var) integrates exp with respect to var or returns
an integral expression if It cannot perform the integration.
INTEGRATE(exp,var,low,hign) finds the definite integral of
exp with respect to var irom low to high. Several nethods
are used, including direct substitution in the indefinite
interral and contour integration. Improper integrals may usc

;hq_ngmes IIF for positive infinity and IIiY for nerutive
infinity. If an integral "form" is desired for
nanipulation (for example, an integral which cannct in
computed until some rumbers 2re cubstituted for sore
parameters), the noun form “INTFGRATT may be used and tiis
will display with an integral sign.

(C30) INTEGRATE(SIN(X)**3,%)@
cos” (x
(D30) —-35-2 - COS(X)

(C31) INTEGRATE(X¥*A/(X+1)**5/2,%,0, IHF)¢
IS A + 1 POSITIVE, NEGATIVE, OR ZFRO?

POSE
IS 4 - A POSITIVE, NEGATIVE, OR ZERO?
POS@
BETA(A + 1, 4 = A)

(D31)
| 2

LIMIT(exp,var,val,dir) finds the limit of %gp as the real
variable var approaches the value val from the direction
dir. Dir may have the value PLUS for a limit from above,
VINUS For a limit from below, or may be omitted (implying a
two-sided limit is to be computed). LIMIT uses the
following special symbols: INF (positive infinity) and MINF

negative infinity). On output it may also use UND
undefined) and IND (indefinite but bounded). ‘LIMIT may be
used to simply create a limit noun ferm and this will
display in a two—dimensional form.

ECBZ; LIMIT((1+X)**(1/X),X,0)@
D32 %E

RESIDUE(exp,var,val,order) computes the orderth residue in the
complex plane of the expression exp when the variable var
assumes the value val. This is defined to be the
coefficient of (var — val)**(—order) in the Laurent series

for exp.
(C33) RESIDUE(S/(S**2+A%¥2) 5,A%3T,1)@
1

(D33)

2

SOLVE(exp,var) solves the algebraic equation exp for the
variable var. If exp is not an equation, 1t is assured to

proe 20

be an expression to be set equal to zero. Var mey be a
function (e.g. F(X)), or other non-atomic exprescion excent
o sum or product. It may be omitted if exp contains cnly one
variable., Exp may be a rational function, and may contain
trigonometric functions, exponentials, etc.
SOLVE([edl,...,eqn],[v1,...,vn]) solves a systen of linear
algebraic equations. 1t takes two lists as argunments. The
first list (eqi, i=1,...,n) represents the ecuationc to be
solved; the second list is a list of the unknowns to bpe
determined. If the total number of variables in tne
equations is equal to the number of equations, the second
argument-list may be omitted. If the given equations are
not compatible, the message INCONSISTENT will be displayed.
If no unique solution exists, SINGULAR will be displayed.

If the equations are not linear in the variables of
interest, a reduced system of polynomials is returned.

These may be processed further to find sets of solutions by
calling SOLVE or in some cases — REALROOTS (section £.6).
The solutions are exact, assuming the user has not used
floating-point numbers in his input, and may involve
symbolic variables. The solution set consists of a list of
numbered equations and an index to the list. If GLOLALSCLVE
[FAISE] is set to TRUE then variables which are SOLVEd for
will be set to the solution of the ecuation if it is unicue.
The success of SOLVE may depend partly on the setting of the
following switches.

SOLVEFACTORS [TRUE] - if FALSE then SOLVE will not .try to
factor the expression. This may be desired in some cases
wvhere factoring is not necessary. , ’

SOLVERADCAN [FALSE]- if TRUE then SOLVE will use RADCAL
(see section 5.6) which will make SOLVE slower but will
allow certain exponential problems to be solved. :

SUM(gﬁg,ind,;g,hi) performs a summation of the values of exp as

the index ind varies from lo to hi. If the summation cannot
be performed, or if ‘SUM is used, the value is a sum noun
form which is a representation of the sigma notation used in
mathematics. CAUCHYSUM [FALSE] when TRUE causes the Cauchy
product to be used when multiplying sums together rather
than the usual product. In the Cauchy product the index of
the inner summation is a function of the index of the outer
one rather than varying independently.

(c4) SUM(1/I,I,1,4)*SUM(F(I*I)ﬁI,1,N)@
" \e—— 2
\ 25 F(I)
(D4) > —
/ 12

=

Sums may be differentiated, added, subtractec, or
nultiplied with some automatic simplification being
performed.

pare 21

PRODUCT(exp,ind,lo,hi) performs a product of the values of exo
as the index ind varies from lo to hi.

FOWERSERIES(exp,var,pt) attempts to generate the peneral form of
the power series expansion for exp in the variable var aiout
the point pt (which may be INF for infinity).

TAYIOR(exp,var,pt,pow) expands the expression exp in a truncoted
Taylor series in the variable var around the point pt. “he
terms through (var-pt)**pow aré generated.

DEFTAYLOR(function(var),exp) defines the Taylor series of
function with respect to variable var to be the expression

€Xp-.
(C1) DEFTAYLOR(F(X),SUM(X**I/(Ix¥2),T,1,TiF))%

5.2 Manipulation

EXPAND(exp) will cause an expansion of the argument. The
MACSYNMA variables MAXNEGEX and MAXPOSEX (originally set to
6) control the maximum negative and positive exponents,
respectively, which will expand. EXPAND(exp,p,n) expands
exp, using p for MAXPOSEX and n for MAXNEGEX.
It is Taster to use the command RATSIMP to expand, if
exp is a polynomial in one variable. [see section 5.6]

58323 PRODUCT((X+I*(I?§)42%5IZ§’3)§) (X + 6) (X + 10)

(C25) %,EXPAND@ . , ,
(D25) X + 20X + 127 X + 288 X + 180

MULTTHRU(expr) expr must be a product containing one sum. Iach
term 1n that sum is multiplied by the other factors in the
roduct. MULTTHRU(expl,exp2) multiplies each term in exp2
vhich must be a sum) by expl.

(c8) X/(X—Y)**2~1/(X—Y)-F(X)/(X-Y)**?@ X FXO

(p8) - + -
X-X 2 3
(X-7Y) (x=-71)

(C9) MULTTHRU((X-Y)**3,%)@)
(03) - (X-1) + X X-Y) - FX)

5.2.1 The Fvaluation Command

EV(exp,argl, ... ,argn) causes the expression exp to be
evéIu t’d aﬁ sinplified with switches set according to

page 22

the values of the argi. The switches are as follows:

EVAL reevaluates the expression so that variavles in
it which have values will be evaluated.

SIMP causes the expression tc be simplified
regardless of the setting of the switch SILP vnich
innibits simplification if FALSE.

EXPAND causes expansion. EXPAND(n,m) set the values
of MAXPOSEX and MAXNEGEX.

DIFF causes all differentiations indicated to be
performed. DIFF(varl,...,vark) causes only
differentiations with respect to the indicated variatles.

NUMER causes some mathematical functions (including
exponentiation) with numerical arguments to be evaluated.
(see section 4.0).

PRED causes predicates (expressions which evaluate
to TRUE or FALSE) to be evaluated.

FLOAT causes rational numbers to be converted to
floating point.

(The NUMER flag causes this to take place also).

RATSIMP causes the expression to be rationally
simplified. (see section 5.6)

y;ﬁ;p causes the substitution of exp for V.

, n addition a list of equations may be given or a
list of names of equations such as that returned by SOLVE.

Any other function names (e.g. SUM) cause evaluation
of occurrences of those names as tnough they were verbs.

The arguments following the first (exp) may be given
in any order. The switches may also be set locally in a
user defined function or globally at the "top level" in
MACS%MA so that they will remain in effect until being
reset.

(C4) SIN(X)+COS(Y)+(W+1)**2+ “DIFF(SIN(W),V)e

D 2
(D4) COS(Y) + SIN(X) + BQSIN(W) + (U + 1)
(C5) EV(%,NUMER,EXPAND,DIFF,X=2,Y=1)@

2
(D5) COS(W) + W + 2 W+ 1.425324

An alternate “top level® syntax has been provided for IV,
whereby one may just type in its arguments, without the
EV(). That is, one may write simply exp,argl,...,argn.
(This is not permitted as t of another expression, i.e.
in Functions, Blocks, etc.?ar _

(C2) 2%¥X-Y¥=3$

(C3) =3*X+2%¥Y==4$

(c5) SOLVE([D2,D3])@
SOLUTION

pare 2%

(E5) Y =1
(ES (s, 6]
£c7§ D2,D6@

D7 5 =73
(C15) X+1/X >GAMMA(1/2)@

(D15) X + % > SQRT(5rT)

2C16g %,NUMER,X=1/2@

D16 2.5 > 1.772454
§c173 %, PRED@
D17 TRUE

MACSYMA Special Variables Affecting General Simplification

%EMODE ££ALSE - when TRUE some exponentials involving complex
numbers (like ZE**(%PI*%I)) are simplified, otherwise (the
default) they are not.

LOGSIMPOFF EFALSE] - if TRUE then simplification of forms like
FE**LOG(X) is inhibited.

EXPON [0] - the lowest negative exponent which is automatically
expanded (independent of calls to EXPAND).

EXPOP [0] - the highest positive exponent which is automatically
expanded. Thus (X+1§**3 vhen typed will be automatically
expanded only if EXPOP is greater than or egual to 3. If it
is desired to have (X+1)**I expanded where N is greater than
EXPOP then executing EXPAND((X+1)**N) will work only if I is
less than or equal to MAXPOSEX.

FACTLIM [-1] the highest factorial to be evaluated
automatically. If -1 all factorials are evaluated.

NONCOMEXPT [FALSE] - if TRUE permits immediately adjacent common
factors of the non—commuatative product operator to be
combined as in collecting exponenets.

NONCOMHONASSOC [FALSE] - if TRUE then the non—-comnutative
roduct operator is assumed to be non-assoociative otherwise

the default) it is assumed to be associative.

TRIGSIGN [TRUE] — if TRUE permits simplification of negative
arguments to trigonometric functions. That is, SIN(-X) will
become -SIN(X) only if TRIGSIGN is TRUE.

pare 24

5.% Part Selection and Substitution

COEFF(exp,var,n) obtains the coefficient of var**n in exp. ror
best results, exp should be expanded. n must be an integer
or a rational H%%ber and may be omitted if it is 1. Coef-
ficients of var**n which are functions of var are ignored.

§02 COEFF(Y+ X*%E**X+1,X,0)0
D2 Y + 1

HIPOW(poly,var) the highest exEonent of the variable var in the
polynomial poly which should be fully expanded.

LOPOW(poly,var) the lowest exponent of the variable var in the
polynomial poly. °

FIRSTINSUM(exp) yields the first term of exp if it is a sunm
otherwise yields exp.

'RESTINSUM(exp) yields all of the terms of exp except the first
if it 1s a sum otherwise yields FALSE.

SUBST(a,b,c) substitutes a for b in c. b must be an atom or a
complete subexpression. For example, X+Y+Z is a complete
subexpression of 2%(X+Y+Z)/W while X+Y is not. When b does
not have these characteristics, one may sometimes use
SUBSTPART or RATSUBST (see section 5.6). SUBST(ggl,gzp) or
SUBST([eql,...,eqk],exp) are other permissible Torms. The
eqi are equations indicating substitutions to be made. TFor
each equation, the right side will be substituted for the
left in the expression exp . Although it is possible to
achieve the same effect using the EV command, SUBST is
faster since EV is more general.

(C1) SUBST(A,X+Y,X+(X+Y)**2+Y)@
(D1) Y+ X+ A

FIRST(QE%) ields the first part of exp which may result in the
first element of a list, the first row of a matrix, the
first term of a sum, etc.

REST(exp,n) yields exp with its first n elements removed. If n
is one it may be omitted. exp may be a list, matrix, or
other expression.

IAST(exp) yields the last part (term, row, element, etc.) of the
€Xp.

DFLFTE(expl,exp2) removes all occurrences of expl from exp2.
expl may be any part or term which occurs in expZ.

page 25

LENGTH(exp) gives the number of elements in a list, the nunber
of rovws of a matrix, the number of terms in a sum, etc.

IMAGPART(exp) the imaginary part of the expression exp.

REALPART(exp) the real part of exp. IMAGPART and REALPANY will
work on expressions involving trigonometic and hyperiolic
functions, as well as SQRT, I0G, and exponentiation.

LHS(egn) the left side of the equation egn.
RHS(egn) the right side of the equation egn.

NUMFACTOR(exp) the numerical factor multiplying the expression
€Xp. |

5.%.1 The Part Commands

The part commands make it possible to reference or
reglace any t of any MACSYMA expression. A part is
referred to by a set of indices these always being non-—
negative integers. For example, in exponentiation the
base is considered part 1 and the exponent part 2. In a
quotient the numerator is part 1 and the denominatcr part
2. In a sum or product the ith term or factor is part i
and in any expression the main operator is part O. Note
that unary minus is considered an operator.

Of tentimes an expression is reordered after being
typed in so it is important to note that part selection
applies to an expression as it would be displayed when
typed by MACSYMA. Thus the first part of X+Y is Y not X
because the expression displays as Y+X.

The command PART(exp,nl,...,nk) obtains the part of
g%g as specified by the indices nl,...,nk. First part nl
of exp is obtained, then part n2 of that, etc. The result
is part nk of ... part n2 of part ni1 of exp. Thus
PART(Z+2%Y,2,1) yields 2. Part(X+Y,0) yields +, however
in order to refer to the operator it must be enclosed in
?‘s. TFor example ...IF PART(D9,0)=?+? THEN ... PART can
be used to obtain an element of a list, a row of a matrix,

etc.
(C1) X+Y/Z%%2@ v
(D1) — + X
2
VA

(C2) PART(D1,1,2,2)@
(D2) 2

page 24

(C%) ‘INTDGRATE(F(X),X,A,B)d

(D3) F(X)DX

o = NI § S (o DN

éczz.g PART(%,1)@

D4 F(X) |

DPART(exp,ni,...,nk) selects the same subexpression as PART,
but nstead of just returning that subexpression as ite
value, it returns the whole expression with the selected
subexpression displayed inside a box. PIFCE holds the
value of the last expression selected using PART or DPART.
If PARTSTWITCH [FALSE] is set to TRUE then FND is returned
when a selected part of an expression (using PART, LPART,
or SUBSTPART) falls of the end otherwise an error nessage
is given.

Continuing with the above example:

' (C2) DPART(D1,1,2,1)@

(D2) + X
- 2

* 7 *
s 2 X X3
2033 PIECE®@
D3 Z

SUBSTPART(x,exp,nl,...,nk) substitutes x for the subexpression

picked out by the rest of the arguments as in PART. It
returns the new value of €xp.

5.4 Craphing

PLOT(g;p,var,low,high) produces an asterisk-plot of the expres-—

sion exp as var (the independent variable) ranges from low
to high. An optional fifth argument of INTEGER causes PIOT
to choose only integer values for var in the given domain.
There are several other options available which are
described in section 8.0. .

GRAPH(xlist,ylist,xlabel,ylabel) craphs the two lists of data

points, and labels the axes as indicated or‘omits labels if
just the first two arguments are given. The variables
SCOPFHEICHT and LINEL affect the height and width of the
plot. ¥ore detail is given in section &.0.

5.5 List Handling and ILISP-like functions

APPEND(list1,1ist2) appends list1 and list? and returns o sin~le
list of the elements of I3ist] followed by the elemontis of
list2.

CONS(exp,1list) returns a new list constructed of the elerent exn
as 1ts first element, followed by the elements of lirt,

INDCONS(exp,list) makes exp the last element of list.

MEMBFR(Egg,list) returns_TRUE if exp occurs as a member (not
within a member) of list otherwice FALSE.

REVERSE(list) reverses the members of list (not the members
themse€lves if they happen to be liste7.

NULL(list) returns TRUE if list is enmpty else FALSE.

APPLY(function,list) gives the result of applying the function
to the list of its arguments. This is useful when it is
desired to compute the argunents to a function before
applying that function. For example, if L is the list
[1,5,=10.2,4,3], then APPLY(MIN L§ gives -10.2. Note that
MIN(L) is unacceptable because (1 MIN does not work on
lists and (2) MIN must be given at least two arsuments.

MAP(fn,list) yields a list each member of which is the result of
applying the function fn to the corresponding member of
list. fn is the name of a function or is of the form
iIHEDA(;i],defn) where [x] is the dummy variable to be used
in the function defn and which will take on the value of
successive elements of list. For example
MAP(LAMBDA([Y],Y+1),[2,70,T]) yields [3,11,2]. MAP(fn,exp)
is also acceptable. In this case fn is applied to each part
of exp (term of a sum, row of a mafrix, etc.) For example,
MAP(RATSIMP, (X**2+2%x+1) /(x41)+(x=1) /(x**2-1)) yields
1/(X+1)4X+1.

Examples

(C34) UNION(X,Y):=(IF NULL(X) THEN Y ELSE
IF MEMBER(T:FIRST(X),Y) THEN UNION(REST(X),Y)
ELSE UNION(REST(X),CONS(T,Y)))$,
(C35) UNION([A,B,1,1/2,X*;2],[—X**2,A,g,1/2])@ ;

(D35) [X ’ 1’ B’ - X y A’ Y’ '2']

5.6 Rational Function Commands

A rational function is the quotient of two jolyronials,
MACSYMA provides a special internal representation (callcd
CRE forcanonical rational expression form) for rotiorai
functions (and polynomials as special cases) wanich reouires
less storage than the general representation. The
difference is pgenerally invisible to the user except that
CRE manipulations are frequently faster, Therefore it ic
advisable to use these whenever the problen of intercct can
be expressed largely in terms of polynomials or raticnal
functions. TFor a more detailed description of scme of tro
rational function commands see section S.0.

RATVARS(vari,...,varn) provides a method for specifyins the
ordering of variables in CRE form. The most main varicile
will be varn, the least ("most constant") will be varl. The
command PRINVARLIST() may be used to print the current
variable ordering.

RAT(%gp,gj,...) converts the exp to CRE form by combining ali

erms over a common denominator and canceliing out tne
greatest common divisor of the numerator and denominatcr. as
well as converting floating point numbers to rational
numbers. The variables are ordered according to the vi,...
if these are specified. RATPRINT [TRUE] if FALSE supresses
the printout of the conversion message. RATFPSIION [2.0I~&]
is the value of the acceptable error in converting the
nunbers.

RATSIMP(exp,v1,v2,...) does much the same as RAT, but converts
the expression back to general form. This allows some
further simplifications to take place which are not apparent
in CRE form. For example, those involving nested functions,
and roots of numbers or polynomials. RAT on the other hand,
does not generally deal with nested functions other than + ,
*, /, -, and exponentiation to an integer power. RAT’s
ansver will be a ratio of polynomials, therefore it does not
work on equations, although RATSIMP does.

RADCAN(exp) simplifies the rational expression exp which may
contain logs, exponentials, and radicals using a canoncial
form described in [2].

RATDISREP(x) converts a CRE x to a normal prefix expression,
i.e. the usual general ré€presentation.

DIVIDE(x,y,var) computes the quotient and remainder of x divided
by ¥, as rational functions in a main polynomial variatle,
var. The result is a list whose first element is the
guotient and whose second elenent is the remainder. var may
be omitted in which case the first variasble which occurs in
Y will be used.

CUOTIENT(x,y,var) computes the quotient cf the two polynonmicis x
and y witn main variable var.

REMAINDER(X,y,var) computes the remainder of tae polynonial

——

divided by the polynomial y with main variaple vir.

GCD(x,y) computes the greatest common divisor of x and y.
GCDOXF [FALSE] if TRUE, MACSYMA takes all gedz to b 1.
GCDSWITCH ETRUE if FALSE then GCD uces tne Collins roduc o
prs algorithm which may work cn some cases where ine [asler
modular algorithm fails (which is the deiault nethod).

FACTOR(x) factors a polynomial or rational function x {nuscr:tur
and denominator). FACTORFLAG [TRUF] if FALSL sulreccos i.e
factoring of integers in polynomials and rational functicns,
DONTFACTOR [FALSE] may be set to a list of variailes with
respect to which factoring is not to occur when appecrin in
polynomials (if FALSE then there are no such veriables).
FACTCR saves factors explicitly present in x if SAVITACIC.LLS
[TRUE] is TRUE. These are then used as trizZl factors in a
heuristic phase of FACTOR. LIRLEFACT [THUE] if FALSL will
cause the Kronecker factoring algorithm to be uscd ratier
than the usually faster BFRLIXALP algorithm. [9,10]

SQFR(x) computes a square-free factorization of the expressicn
X. A number of special checks occasionally factor
polynomials even though the factors cccur singly.

GFACTOR(x) factors the polynomial x over the Gaussian integers
(i. €. with SQRT(-1) = %I adjoined)

MOD(x) converts the polynomial x to a modular representation. X
must be in only one variable. If NMODULUS [FALSE] is set to
a positive integer p, then all aritnmetic 1n the rational
function routines will be done modulo p.

PARTFRAC(x,var) expands a rational function x in partial
fractions with main variable var.

RATCOEF(exp,x) picks out the coefficient of x (which may be a
power, product, sum, quotient, etc.) in exp.

RATSUBST(a,b,c) substitutes a for b in ¢c. b may be a sum,
product, power, etc. RADSUBSTFLAG TFALSE] if TRUE allows
KADCAN to be called by RATSUEST thus allowing substitutions
like A for SQRT(X) in X+1 to yield A**2+1. [ATSUBST returns
the answer in CRE from if and only if ¢ is in CRE form.

RESULTANT(x,y,var) computes the resultant of the two polynomials
x and y, and eliminates the variable var. The resultant is
a determinant of the coefficients of var in X and y which
equals zero if and only if X and y have a non-constant
factor in conmmon.

RATDIFF(exp,var) differentiates the rational expression exp wita
respect to var. For rational expressions this is foster
than DIFF. The result is left in CRE form.

page 30

HNROOTS(poly,low,high) finds the number of realroots of tihe
- univariate polynomial pol§ between the limits of low and
higg which may be MINF and INF respectively for ninus .
infinity to plus infinity. The method of Sturnm cequences 1S
used. [11]

REALROOTS(poly,bound) finds all of the real roots of the
univariate polynomial poly within a tolerance of bound
which, if less than 1, causes all integral roots to e found
exactly. bound may be arbitrarily small in order to achieve
any desired accuracy (if less than RATEPSILOL it should Le
rational).

5.6.1 Generalized Rational Function Commands

Generalized rational functions are developed by taking

"rational functions” as coefficients of multivariate

lynomials and positive rational numbers as exponents.
owever, there are a number of significant extentions built
into the implemented version of the generalized polynomial.
A variable in a generalized polynomial can fall into one of
four classes. An algebraic number (a zero of a polynomial
with rational real coefficients;, a truncating variable
éwhich acts like a zero of X**N), a non-truncating variavle
normal rational function variables), or a coefficient
variable.

PS(exp,[vari,defl,...],,[v1,v2,...]) converts e to generalized
-%gtgonél functionjform. “The sgcond argumeﬁ%pis a paired
list where the odd numbered members, the vari, are assumed
to be atomic and are not evaluated. The even numbered
arguments are the definitions of the vari and are one of the
following:
1. FALSE - indicating vari is non-truncating.
2. a number - indicating vari is to be truncated
to degree defi.
3. a monomial in vari indicating that vari is a
truncating variable.
4. a polynomial - indicating that vari is
algebraic.
The second list is a variable ordering list. If there is a
variable in the list which has not been defined then it is
assumed to be non-truncating. This ordering should be
listed with the most important variable last.

HRAT(exp,varil,var2,...) expands exp in generalized rational
forn. The vari are used as 1n the second list in PS.

SRRAT(exp) converts exp from generalized rational form to

ordinary ration orm. This is equivalent to
RAT(RATDISREP(exp)) but works much faster.

SR et

page 31

557 The MaTrix Com'mclnjs

ENTERMATRIX(m,n) allows one to enter a matrix element by element
W1§h.the computer asking for values for each of the m by n
entries. - -

MATRIX (rowl,...,rown) defines a rectangular matrix with the
1ndlca€§d rows. Each row has the form of a list of
expressions, e.g. [A, X¥*2, Y, 0] is a list of 4 elerents.

GENMATRIX(array,dim1,dim2) generates 2 matrix of dimensicn din]
by dim? Troﬁ fﬁe’arrax.

ADDRﬁW(ﬂ,;) appends the row given by the list 1 onto the matrix

IDENT(n) produces an n by n identity matrix.

DIAGMATRIX(n,x) returns a diagonal nmetrix of size n by n with
the diagonal elements all x. An identity matrix is created
by DIAGMATRIX(n,1), or one may use IDENT(n).

FLEMENTX(M,1i,J) gives the (i,j) element of M.

SETELMX(;,;,&QM) creates a new matrix which is identical to E
except that its (i,j) element is x.

AUCCOEFMATRIX([eg1,...,eqn],[vari,...,vark]) the augmented
coefficient matrix for the variables varl,...,vark of the
system of linear equations egl,...,eqn.

COEFMATRIX([egl1y+..],[varl,...]) the coefficient matrix for the
variables varl,... of the system of linear equations egl,...

COL(M,i) the ith column of the matrix M.

ROW(M,i) the ith row of matrix M.

SUBMATRIX(mlye..,mn, M, n1,...,nn) creates a new matrix composed
of the matrix M wIth Tows ni deleted, and columns ni
deleted.

MINOR(M,i,j) computes the i,j minor of the matrix M

TRANSPOSE(}M) produces the transpcse of M.

ECHELON(}M) produces the echelon form of M.

RANK(}M) computes the rank of the matrix M.

DETERMINANT(}) computes the determinant of M.

CHARPOLY(M,var) computes the characteristic polynomial for M

with respect to var. That is, DFETERMINANT(M -
CTIAGMATRIX(var ,LENGTH(M))).

5.8 Type Testing

ATOM(exp) is TRUE if exp is atomic (i.e. a number, or nare) else
FALSE.

CONSTANT(exp) is TRUE if exp is a constant (i.e. comrosed of
numbers including %PI, %F, %I or any variables bound to
constants) else FALSE.

INTRCER(exp) is TRUE if exp is an integer else TFALST.

LISTP(exp) is TRUE if exp is a list else FAISI.

MATRIXP(exp) is TRUE is exp is a matrix else false.

NUMBER(exp) is TRUE if exp is an integer or a floating noint
numnber else FALSE.

RATNUM(exp) is TRUE if exp is a rational number else FALSE.
'FLOAgﬂggéexp) is true if exp is a floating point number else

5.9 Utility, Input-Output, and Display

9%(i) is the ith previous computation. That is, if the next
expression to be computed is D(j) this is D(j—;). (see
section 6.5)

DISPLAY(expri,expr2,...) displays equations whose left side is
expri, and whose right side is the value of the expression.

PRINDISPLAY(expr1,expr2,..) displays the expri one per line.

PRINT(exp1,exp2,...) evaluates and prints its arguments one
after the other on a line. If expi is unbound or is
preceded by an apostrophe or is enclosed in ?°s then it is
gri?ted literally. For example, PRIET(?THE VALUE OF X IS
-’ -

READ(word1,...) prints its arguments literally then reads in and
evaluates one expression. For example, A:READ(?ENTER THE
NUMBFR OF VALUES?).

PISPFUN(f) prints the definition of the function f.

CETDEPENDS(f1,f2,...) retrieves the dependency relations for the
functions f1,f2,.. as previously given to the command
DEPENDENCIES. The result is a list such as
[£1(x%1 39Xy 00e) 9 T2(X143X25 0 ee)gane]o

TEMTUKCTIOK (£1,£2,...) removes the functions f£1,f2,... from
MACSYLA.

REMVALUE(name1,name2,...) removes variables and matrices fror
the systen.

REHMARRAY (namel,name?,...) removes arrays and frees the stora-c
occupied. ‘

REMOVE(arg1,propl,arg?,prop2,...) argi is either a sincle nanc
or a list of names from which the property propi is to e
renoved. propi may be ARRAY, FUNCTION, VALUL, LiuinDo,
ALIAS, BINDTEST. \

KIll(argl,arg2,...) eliminates its arguments from the LACII A
system. If argi is a variable, function, or array, tie
designated item with all of its properties is renoved iron
core and the storage it occupies is reclaimed. If
argi=VALUES, FUNCTIONS, or ARRAYS then every item of that
class is KIILL ed and if argi=ALL then every function, value,
and array previously defined is KIIL‘ed. IF argi=HISTOkY
then all input, intermediate, and output lines to date (tut
not other named items) are eliminated. If argi== nunber
(n), then the last n lines are deleted. KIII removes all
properties from the given argument whereas the REHOVE set of
functions remove a specific property. Also they print out a
list of names or FALSE if the specific argument doesn’t
exist whereas KILL only prints out "DONE". :

ALIAS(newnanme1,o0ldnamel,...) provides an alternative name for a
function (user or system), variable, array, etc. Any even
number of arguments may be used.

REMALIAS(name1,...) removes alternate names created by ALIAS.

WRITEFILE(device,username) opens up a file for writing. Usually
device is DSK.

CLOSEFILE(filenamel,filename2) closes a file opened by WRITEFILE
and gives it the name filenamel filename2.

LOADFILE(fn1,fn2,device,username) loads a file as described b
its arguments. If éevice and username are omitted then the
last device and username seen (initially DSK and user’s
system name) will be used. fnl1 fn2 must be a file of LISP
functions.

BATCH(file specification) reads in and evaluates MACSYMA
expressions from a file. (see section 6.0). '

DEMONSTRATE(file specification) same as BATCE but pauses after
each command and continues when a space is typed. (see
section 6.0).

BATCON (argument) continues BATCHing in a file which was
interrupted. (see section 6.0).

PLAYEACK() "plays back" 211 the input and output lines since
(C1). PLAYBACK(n) plays bvack the last n expressions (Ci, Di,

N

page %4

and Fi count as 1 each). PLAYBACK(SICW) places <LALLACL in
a slow-mode similar to DENMONSTRATE’s (as opposed to tne
"fast" BATCH). This is useful when creating a seconcsry-—
storage file in order to pick out useful expressions.
PLAYBACK(STRING) strings—out (without $°s or «’s) ali input
lines vhen playing back rather than displaying tnem.

SAVE(args) saves quantities described by its arcuments cn disk
and keeps them in core also. (see section 7.0).

STORE(args) same as SAVE but doesn’t retain guantities in core.
(see section 7.0).

RESTORE(file specification) reinitializes all quantities filed
avay by the SAVE or STORE commands. (see section 7.().

REMFILE() removes files created Ly the secondary storage schene
(see section 7.0).

UNSTORE(namel,...) brings the named expressions into core. (see
section 7.0).

STRING(expr) puts expr into the buffer for editing (it is
usually Ci) (see section 2.0).

STRINGOUT(file description,A1,A2,..) outputs to a file given by
file description ?[filename1,filenameQ,device,username]) the
values given by A1,A2,.. in a MACSYMA readable fornat. The
file description may be omitted and default values will te
used. The Ai are usually C expressions or may be ALL
meaning all C expressions.

TIME(Di) gives the time in milliseconds taken to compute Di.

NOUN(name1,..) makes the named functions NOUNs.

LOGOUT() logs the user out of the ITS time sharing system [8].
This is useful when it is desired to BATCH in a file and
have the terminal logged out automatically when the
computations are finished.

MACSYMA Special Variables for I/0, Status, and Display
ARRAYS - a list of arrays defined thus far.

FUNCTIONS - & list of user functions defined so far.

VALUES - a list of variables (including matrices) which have
values.

EXPTDISPFLAG [TRUE] - if TRUE MACSYMA displays expressions
vith negative exponents using quotients.

CENINDEX [I] -the alphabetic prefix of the index of
summation for generated sums.

page Z5

NOSTAR [TRUE] - if TRUE causes multiplication to be
displayed as a space rathér than an *.

?9STFLAG [TRUE] - if FALSE MACSYMA displays SQiT as exponent

INCHAR [C] - the alphabetic prefix of the nanes of
expressions typed by the user.

LINECHAR [E] - the alphabetic prefix of the nanes of the
values of intermediate displayed expressions.

OUTCHAR [D] - the alphabetic prefix of the nanmes of
outputted expressions. : :

IBASE [10] - the base for inputting numbers.
BASE [10] - the base for display of numbers.
LINENUM - the line number of the last expression.

IASTTIME -~ the time to compute the last expression in
milliseconds. :

TIME [FALSE] - if TRUE causes MACSYMA to print the time used
after each computation. ‘

LINEL - the length of the printed line on the terminal. Also
used for plotting (see section &8.0). |

SCOPEHEIGHT - the height of the area used for plotting. (see
section 8.0).

5.10 Debugging Commands (see also section 11.0)

TRACE(namel,name2,...) gives a trace printout whenever the
functions mentioned are referenced. (see section 11.0).

UNTRACE(namel,...) removes tracing incurred by the TRACE
command. (see section 11.0). UNTRACE() removes tracing from

all functions.

REMTRACE() removes the tracing facilities from MACSYMA thus
freeing up some storage. They will be reloaded wnen TRACE
is used again. (see section 11.0).

EINDTEST(vari,var2,...) causes MACSYMA to give an error message
whenever any of the vari occur unbound in a computation.

DEBUGMODE(switch) causes MACSYMA to enter a special debugging
mode if switch is TRUE and to exit if switch is FALSE.

PACKTRACE hes as value a list of all functions currently
entered.

pare 36

EXIT resumes a computation interrupted by control-A or bv an
error break caused when DEBUGMODE(TRUE) has been executec.

Special Variables

DEBUG [FALSE] if TRUE causes a message to be printed each
time a bound variable is used for the first time in a
computation.

PREDERROR £FALSE - if TRUE causes a message to be printed
whenever the predicate of an IF statement fails to evaluate
to either TRUE or FALSE.

5.11 Pattern Matching and Related Commands

FREEOF(x,expr) yields TRUE if x does not occur in expr and FALSE
otherwise. x must be an atomic variable.

DECLARE(patternvar,predicate) associates a predicate with a
pattern variabie so that the variable will only match
expressions for which the predicate is not FALSE. For
pattern matching, predicates refer to functions which are
either FALSE or not FALSE (any non FALSE value acts like
TRUE). For example after DFCLARE(Q,FREFOF(X)) is executed,
Q will match any expression not contzining X. If the match
succeeds then the variable is set to the matched expression.
The predicate (in this case FRFFOF - a function of two
arguments) is written without the last argument which should
be the one for which patternvar is substituted.

DECLARE(var,TRUE§3w111 permit var to match any
expression.

DEFMATCH(progname,pattern,patvari,...,patvarn) creates a
function of n+1 arguments with the name progname which tests
an expression to see if it can match a particular pattern.
The pattern is some expression containing pattern variables
patvari,...,patvarn either explicitly, or implicitly in a
previous DECLARE command. The first argument to the created

function progname, is an expression to be matched against
the "pattern"” and the other n arguments are the actual

variables occurring in the expression which are to take the
rlace of dummy variables occurring in the "pattern". Thus
the patvars in the DEFMATCH are like the dummy arguments to
the SUBROUTINE statement in FORTRAN. When the function is
"called" the actual arguments are substituted. For example:
éC1 NONZERO(T) s= NOT§T=03$
C2) NONZFROANDFREFOF(X,E):= NONZERO(E) AND FRFFOF(X,E)$
203 DECLAREéA,NONZEROANDFREEOF(X))$
C4) DECLARE(B,FREFOF(X))$
(C5) DEFMATCH(LINEAR,A*X+E,X)$

This has caused the function LINFAR(exp,varl) to be
defined. It tests exp tc see if it is of the form A*X+D

vhere A and B do not contain X and A is not Zero.

DEFMATCHed functions return (if the match is successful) a
list of equations whose left sides are the pattern variatlec
and_whose right sides are the expressions wnich the mattern
variables matched. The pattern variables are also set to
the matched expressions. If the match fails, the function
returns FALSE. Thus LINEAR(3*Z+(Y+1) *Z+Y**2 7) would return
[B=Y*%2 , A=Y+4 , X=Zg. Any variables not declared =s
pattern variables in DECLARE or in DEFMATCH whick occur in
"pattern" will match only themselves so that if the trird
argument to the DEFMATCH in (C5) had been omitted, then
LINEAR vould only match expressions linear in X rot in any
other variable. '

SELECTOR(predicate) defines predicate as one which will also
ixtract a particular part of the expression it is applied
O. '

Thus after executing DECLARE(A,SIGNUM) the pattern
variable A would match and be set to any expression since
SIGNUM is always non FALSE. However if prior to this SIGNUM
had been made a selector, then A would match anything but
would be set to the sign (1,0, or -1) of the matched
expression. .

DEFRULE(rulename,pattern,replacement) defines and names a
replacement rule for the given pattern. If the rule named
rulename is applied to an expression (by one of the APPLY
programs below?, every subexpression matching the pattern
will be replaced by the replacement. All variables in the
replacement which have been assigned values by the pattern
match are assigned those values in the replacement which is
then simplified. The rules themselves can be treated as
functions which will transform an expression by one
operation of the pattern match and replacement. If the
pattern fails, the value of the rule is FALSE.

APPLY1(exp,rulel,...,rulen) applies the first rule to the
eﬁfression until it fails, then recursively applies the same
rule to the subexpressions of that exgression, left-to—-
right, until the first rule has failed on all
subexpressions. Then the second rule is applied in the same
fashion. When the final rule fails on the final
subexpression, the application is finished.

APPLY2(exp,rulel,...,rulen) differs from APPLY1 in that if the
first rule fails on a given subexpression, then the second
is applied, etc. Only if they all fail on a given
subexpression is the whole set of rules applied to the next
subexpression. If one of the rules succeeds, then the same
subexpression is reprocessed, starting with the first rule.

TELLSIMPAFTER(pattern,replacement) defines a replacement for
pattern which the MACSYMA simplifier uses after it anplies
the builtin simplification rules. For example:

(c44) srEC(%PI)Q

D44 B SEC(5PI)

C45) DECLARE(EXPR,TRUE)S . &

C46) TFLLSIMPAFTER(SEC(FXPR),1/COS(EXPR))%

§c47g SEC(%PI)@

DAT -1

(C48) SEC(X)@ 1

(D48) —
COS(X)

TFLLSIMP(pattern,replacement) is similar to TTLLOTHrALML:.
but places new information before old so that it is applied
before the built—in simplification rules. The pattern muy
not be a sum, product, single variable, or number. (‘his
restriction does not apply to TFLLSIVPAFITR).

pare oL

6.0 Batch Commands

6.1 Introduction

The Batch set of commands in MACSYIA namely DBATCH
DEMONSTRATE or DEMO, and BATCON (mnemonic’ for BA%ChCOhtinuo),
provide a facility for executing comnands stored on z dicl: rilc
rather than in the usual on-line mode. Tais facility nas
several uses, namely to provide a reservoir for working
commends for giving error-free demonstrations or to helir in
organizing one’s thinking in complex problem-solvings situations
wggie modifications may be done via the PDP6/10 uiCO rile
editor.

A batch file consists of a set of MACSYMA commends, eacu
with its terminating @ or $, which may be further separated uty
spaces, carriage-returns, form-feeds, and the like. 7The LATC.
and DEMO(NSTRATE) commands have both a simple and nore
complicated format, which are described below.

6.2 The Simple Format
BATCE(filename1, filename2, device, usernane)

'(The same command format holds for DENO(I'STRATE) as well.)

The arguments to BATCH (or DEMO) in this format specify the file
vhich is to be batched, in standard JTS format. Here, each file
is specified by two fiienames of at most six characters each

the device the file is on, usually DSK and the user file
directory. E.g. DEMO(SOLVE, TEST, DSK, MACSYM) calls for
"demonstrating” (see below) the file SOLVE TEST on the MACSYE
disk directory. Latter arguments to the BATCH or DEMO commands
may always be omitted if they are known from previous file-
manipulating commands.

The BATCH command calls for reading in the commends from
the file one at a time, echoing them on the user console, and
executing them in turn. Control is returned to the user console
only wheén the end of the file is met. Of course, the user may
quit out of the file-processing by typing <control>G at any
point. DEMONSTRATE differs from BATCH only in that it pauses
after the execution of each command, waiting for the user to
type a space which tells it to go on. If the user types any
other character, file-processing will then terminate, giving
control over to the user console. (The user may actually
continue processing from the file at any time — see the LATCON
command below.)

6.3 The More Complicated Format

BATCE([fn1, fn2, dev, uname], delay-switch, index—
specification)

The arguments to BATCH or DEMO in this mode are as follows:
The first argument is the file specification (as avove),
enclosed in brackets.

e
JONERIN SR

The second argunent, the delay-switcn, nay 1c answernd oy
Cii or OFF (the default). This switcn has to do vita tac
temporary inability of LISP, the system underlying HACLILLA, Lo
nave more than one input file open at a time. I in lihc couwrse
of batching in a file of commands, execution of a ceomnanc Joren:
a second file to be input, this would ordinarily cauce an Crror.
However, setting the delay-switch to Ol causes the entirc uiich
file to be read in before execution of it beging, tnus aioriing
the error. 7The default for tne delay-switch is C.r, a5 tue
circunstance described above is not frequent, it takes scne vin
to read in a batch file, and one may always continue natcening
via the EATCON command. As soon as the inability oi LIg - ic
removed, this switch will no longer be needed.

The index-specification is given by one or tue argurcnto,
the possibilities being: (In the following, m and n are
positive integers.)

(i) m. This indicates that processing is to bezin witi tie
mth commend in the file. Thus, the default for tne index—
specification is 1.

(ii) m, n. This indicates that only the nth command through
the nth command are to be procesced.

(iii) a variable (say F00). F0O rust be non-numeric and
neither TRUE nor FALSE. This causes file-prccessing to wegin at
FOO and continue until the end of the file. This nakes it
unnecessary to count commands as required by (i) above.

(iv) variable (say F00), continue-flag. The continue-flag is
either ON (the default, and unnecessary) or OFF. If OFF, this
enables one to separate a batch file into subfiles by prefixing
a command in the file with 00 . By using FOO as the index—
specii'ication, one may execute only that subfile which begins
with FOO and ends with some other variable , or the end of
file. If the continue-flag is ON, this causes mode (iv) to
operate as (iii) above.

One can see that BATCH(SOLVE, TEST, DSK, MACSYM) and
BATCH([SOLVE, TEST, DSK, MACSYM], OFF, 1) are equivalent.

6.4 The BATCON command

The BATCON command is used to continue or change the last
BATCH or DEMO command, without it being necessary to mention
again BATCH or DIMO, the file specification, or the setting of
the delay-switch. Of course, if one wishes to ciange any of
these, a new call to BATCH or DEMO is required.

The possible argument(s) to BATCOL is (are) as follcws:

i) & nunter '
ii) nunmber1, nunber?

iii) a variatle

iv) variabvle, continue-flag

are all as avove. The numeric arsuments may involve tne
variable BATCOUNT which is set to the number in the file of the
last expression FATCH ed in. Thus LATCON(BATCOULNT-1) will
resure DATCH inc fror the expression before the last BATCH ed in
from vefore.

One other rmode is possible:

pare 41

(v) skip-flag. The skip~flag is useful if an errcr hos
occurred while batching, or if the user wishes to inter icct
comnands from the console while in DFMO-mode and then to
continue processing from the file. The skip-{lar may be cithor
TRUI' or FALSE. If FALSE, this indicates that processin~ is to
continue with the last command attempted (surnosedly editted, in
case of error); if TRUE, this incdicates that processin~ i tc
continue with the next zuntried) comnand in the file.

€.5 liscellany

(1) Comments may be added to batch files at any wcint, nnd
vill, of course, be treated as such when batchins in tie f3ilc.
A comment is any string beginning with /* and endine with ¥/ a8
in PL/I. '

(2) Any command in & batch file may begin with vorieiles; .
If not in a subfile mode, this prefix will be treated as o
comment,)

(3) When using the batch commands, it is inconvenient tc
keepr track of which Di label MACSYMA will assign to a -
computation; yet later commands often need to refer to an
earlier computation. One way to ret around this, of course, is
for the user to explicitly label some of his commands. A
function 7} is also provided, such that #5(-i), wnere i is
positive, refers to the result of the itin previous comnmand.
Fego, %%(=1) and the variable % both refer to the same
computation. :

ey
DG Lo
L

7.0 Secondary Storage Conmands

7.1 Introduction

There are two different reasons for wanting to ua>)
secondary storage while running a NACSYHL. Sometines thoe voer’s
intermediate expressions take up a lot of corc, and it i
impossible to complete the job if all the interrmedicte
expressions are kept in core. In this case the user weuld ile
‘to have his intermediate expressiors written auvtomatically tc
disk, in order to free up core storare. On tne cther h&nd, Coo
users would like to save some expressions on disk so toat tacy
can e read tack into a future MACSYMA a2t a later time. In iaic
case the user would like to specify certain expressicns to e
stored away and to name the disk file where they 2re to Le
stored. MACSYMA now offers the user two secondary storage
schemes. The user may ask to have his expressions auvtoraticedly
filed away on disk. Or he may, by means of the SAVE and LiO.dl
commands, exercise explicit control over thne storage of
expressions. These latter commands give the user more power and
flexibility at the expense of a greater effort. It is expected
that the user whose only concern is to run a big job whicn would
not run without using secondary storare will use the autematic
storage schene, while the user who wishes to save expressicns
for use in later MACSYMAs will use the SAVE and STORE commands.

7.2 Automatic Storage of Expressions
A- How to use it

To activate the automatic storage scheme the user nerely
sets the MACSYMA variable DSKUSE to TrUL. FROM THIS POIxT Qi
labelled expressions will be written out periodically on disik.
(A labelled expression is one which is referred to by a
linelabel, e.g. D4, C7, E12.) Once an expression is written on
disk it will no longer reside in core anc most of the core
storage taken up by it will be released. Wnen the user attenpts
to reference an expression which has been stored on disi,
MACSYMA will retrieve the correct value from the disk file.

B- Cleaning up the disk

The automatic storage scheme will in general cause
several disk files to be created, which are of no furtner use
after the user has finished running nis current FACSYMA. There
is a function of no arguments, REMNFILE, which will delete all
tne files created by the automatic storagec scheme. Thus ii tne
user does not want these files to stay around, ne snould exccute
REMFILE()@ before leaving [AC3YlA. '

C—- Options

The user may specify how often files are written, hov
largse they are, and what they will be named. Or e may accoii
the defauvlt velues for all tnese. The following wACIYLA
variables are relevant.

YV A
pace 4o

FILTHAME: The value of this variable is tie first nanc
of the files wnich are renerated py the
autoratic disk storage scheme. The derauli
valug 1s the first three characters ¢f tio
user’s login name concatenated with o trice
digit random number (i.e. ECLG(4)

FILENUM: The value of this variable, = nunber, io toae
second name of the last file vritten. Lwzcn
time a file is written, this value is firct
increased by 1, so it must always be
numeric. It is initially set to O.

FILESIZE: The value of this variable is the numicr of
expressions written into each f{ile.

RETAINNUM: Vhen the number of expressions in core
reaches FILESIZF+RETAINNUM a file is
written. ? UNDENT 20
DEV: The value of this
variable is the default device. It is
initialized to D3X.

UNAME': The value of this variable is the default
sname. It is initialized to the user’s
login name, if he has a disk directory, and
to MACSYM otherwise. UNAME determines to
what directory disk files will be written.

7.3 Explicit storage of expressions — the SAVE and STORE
commands

A - Use of the commands

The SAVE and STORE commands allow the user to explicitly
state that certain expressions should be written onto disk.
These commands also allow him to specify the file into which
these expressions should be written. They allow the user to
store away arrays, function definitions, and any other kind of
value. The main purpose of these commands is to allow the user
to save expressions on disk so that they can be read into future
MACSYMAs.

SAVE and STORE are identical in all respects but one.
Vhen an expression is STORE’d it is botn written on disk and
removed from core. (VWhen the expression is referenced, of
course, tne correct value is retrieved from disk.) When an
expression is SAVE’d, it is written on disk but not removed fronm
core. 7The only difference between these two commands is their
effect on core storage.

SAVE and STORE take any number of arguments. If the
first argument is a list it is assumed to be the file
specification (i.e. [FN1, FN2, DSK, USIR]). In accordance with
the standard options for file specifications, the latter
arguments may be omitted from thne list and the default device

vace 44

and username will be assumed. If the first argument is not
list, the expressions will be-written into a file wita the
default filename. The value of the MACSYHA variable STLIN/CL 1o
the default first filename, and the value of the IACIUUA
variable STORENUM is the default second filename. 1ne value ol
STORENUM is decreased first by 1 each time a file is written, o
its value must always be numeric. SIORERUM is initially O. Il
value of DEV is the default device, and the value of Ux/lill is
the default username. _

All aerguments to SAVE or STORE, except possibly the

first, must be one of the following:

1- VALUES Vhen this atom is an argument, every user
variable which hes been assirmed a value (i.e. with :) will be
written to disk. This will not cause variables whose purnoce is
to communicate with the system (e.e. LINFNUM, NONCOMMOI'AZSOC,
FILENAME) to be stored.

2— FUNCTIONS VWhen this atom is an argument, every user
function definition is written tc disk.

3- ARRAYS VWhen this atom is an argument, every array is
vritten to disk. Writing an array to disk means writing out all
of its elements as well as any function definition which may be
associated with it.

4— TABELS VWhen this atom is an argument, every line
(i.e. every éxﬁression which is referred to by a linelabel) is
written to disk. :

- B~ When any other atom is an argument, it must be either
an array, a function, or have a value. It gets written to disk.

6- A=B The effect is similar to the case where the
argument is Jjust B, i.e. B gets written to disk. The only
difference shows up if the file is read into some future .
MACSYMA. In that case, the expression which is referred to as
"B" in the present MACSYMA will be referred to as "A" in the
future MACSYMA. For example, suppose I wish to save some
expression, say D7, for use in a future MACSYMA. I can execute
STORE([FN1, FN2, DSK, ECR], YESTERDAYSD7 = D7)@. D7 is now
stored on disk. When I come back the following day and load in
a fresh MACSYMA I merely execute LOADFILF(FN1, FN2, DSK, FCR)@
and the variable YESTERDAYSD7 will take on the value which 7
had yesterday. This renaming however has no effect on the
vresent MACSYMA, where D7 must still be referred to as "D7".

A command like STORE(LABFLS)® could cause difficulty if
the stored expressions are read into a future MACSYMA, because
expressions referred to by linelabels will be lost when that
linelabel appears agein in the future MACSYMA. Therefore when
reading such expressions into a fresh MACSYMA, the user should
either reset LINFNUM, or INCHAR and OUTCHAR. He can assure that
this rets done automatically by executins a sequence such as
X:Fe ‘

Y2 GE

STORY(LAPELS, INCEAR=X,0UTCEAR=Y)¢C '

/fter the resultant disk file is read into & fresh MACSYMA,
IIICHAR and OUTCHAR will automatically be changed into “F and “C
respectively.

The user should note that each use of the SAVE or STORFE
ccrmend will cause exactly one file to be written, regsardless of

the number of arguments the command is riven.

MACSYMA keeps lists of all the values arrays, ore
.funcglons defined by the user. These lisis are thevvélﬁﬁi o1’
the NACSYMA variables VALUES, ARRAYS, and FUNCTIONS, -
fespectlvgly.. When one of the words "VALUES"™, "TFUNCTIDNCM, or
'ARRAYS" is riven as an argunent to SAVE or STORT, every méwbnr
of the corresponding list gets STORE’4. k o

Certain MACSYMA variables (i.e. LINEKUM, FILFSIZT,
FONCOMNOFASSOC, etc.) are used to communicate to the ACSTIA
cystem that certain options are in effect, or to tell the svsten
to use certain values. These variables should not be STOD
(though they may be SAVE’Q), since tne system prosrars will rot
bte able to correctly retrieve their values fron disk. In
general, one should not attempt to STORF variables whose nurrmose
1s to provide information to the system. '

disk B- Retrieval of expressions which have been written to
is

1- In the present MACSYMA

Expressions which are written on disk using the SAVFE
commend also reside in core, so the notion of retrieving them
from disk in the present MACSYMA is not applicable. Fxpressions
written to disk using STORE, however, no longer reside in core.
Vhen such expressions are referenced the systen will always
retrieve the correct value from disk. When a STORE’d array is
referenced, the array will be brought back to core. Functions
and values will be read from disk correctly, but will not be
returned to core. If the user wants to bring an expression back
to core he may use the command UNSTORT. This command takes any
number of arguments. FEach argument must be an atom, and if this
atom refers to an expression which is stored on disk, the
expression is returned to core. Of course, when an expression
is UNSTORE’d, either by the user or by the system (as happens
vhen STORE’d arrays are accessed), a copy of the expression
still remains on disk in the assigned file.

2— In future MACSYlMAs

Files created by SAVE and STORE can e loaded into
future MACSYlMAs using the LOADFIITI command. This will set up in
core all those expressions which were written into the file.
Some of the expressions will have different names than they had
in the MACSYMA where they were created, if the renaming cption
(i.e. arguments of the form A=B) of the STORT or SAVE command
vas used.

7«4 Saving a MACSYMA Overnight

Often a user in the middle of his work would like to
save everything on disk so he can go home and resume work
tomorrov. There is as yet no simple way to save the complete
state of a MACSYMA. It is hoped though that a thoughtful user,
by fellowing the instructions in this section, can recreste the
state of a system without too much difficulty. Vhen the user
decices to go home and to save the state of MACSYilA, he should

vare A0

execute , ’ o
SAVE([WENT,HOME,DSK,USER],LABELS,VALUES,PUECTIOIS,AMﬂAiqzLibmmuﬁ
This will write all his arrays, functions, values, and linea
into a single disk file. If the user has been usinr the
sutonatic storage scheme he should now exccute SFIn() we
delete useless files from disk. Vhern the user cones Lac. ui.e
next day he should load a fresh MHACSYHA and execute one ci Uie
following two commends:

LOADFILE(WiNT , HOME, 3K, USER) ©

RESTORE(WENT, HOME, DSK, USFh)C

The former commend will cause all the expressions Iron yesterday

to be loaded into today’s MACSYMA. The latter comnand has the
same effect, but executing a RESTORL comrand causes tne
expressions not to reside in core. (Of course, if RITTOLY is
used and the expressions therefore remain solely on disk,
MACSYMA will retrieve the correct value from disk wihen tuc
expressions are referenced.) Please note that wnereas LOAL:TL:
is a general command which can be used to load many differenct
kinds of files, RESTORE may only be used on files which were
created by the SAVE or STORE commands (also on files which were
created by the automatic storage scheme). Its sole purpose is
to avoid a drain on core storage wnen & user wants to restore
the state of a MACSYliA.

This sequence is not complete because it will not save
the properties of the user’s variavles (i.e. GRAD,DIPTHDS), nor
will it save any ALIAS information. Thus if the user wants to
save the complete state of his MACSYMA he will have to prepare a
file himself in order to reinitialize these properties in a
fresh MACSYMA. The user can prepare a file of the appropriate
MACSYMA commands which he can read into a fresh HACSYHA using
the BATCHE command.

Yoo

/

8.0 Plotting Commands

The MACSYMA commands PIOT and GRAPH produce character plots
of' specified functions and sets of data points. They can also
be used to produce output files for plotting on the A.I. Calconp
plotter. The format of these commands and the variatles used by
the corresponding routines are described below:

VARIABLES:

LINEL - width of graphing area in terms of the number of
characters ‘ :
default values: 68 for DATAPOINT
88 for IMLAC
79 for hard copy devices

SCOPFHEIGHT - height of graph in terms of number of characters
default values: 24 for DATAPOINT and hard copy devices
38 for IMLAC ‘

CALCOMP - if set to TRUE will cause the output of a file fo
use on the Calcomp; file is output on :
DEV;UNAME:FILENAME FILENUM+1,the variables of
which can be set by the user.

(see section 7.2 for explanation of FILENUM).

AXES - if set to TRUE will cause the X=0 and Y=0 axes to be
displayed.

FORMATS FOR PLOT:

PIOT (F(x),x,low,high)
Plots the expression F(x) over the domain low < x <high.

PLOT (F(x),x,low,high, INTEGER)
As above, but plots F(x) only for integer values of X.

PIOT (F(X) 3%, [X1,X2,X3,500.,x0])
Plots the function F(x) for the values X1,X2,X3,...,XnN.

PLOT (F(xX1,X25X35eee9Xn)) _

The user is asked to define the independent variable and to
set the other variables to constants. He is also asked to
provide the domain for the independent variable. A plot is
produced as for the other formats.

POT ([y1’y2:3’§7-"’yn]) . . .
The user is asked to provide a matching list of values for
the independent variable and a graph is made of the two sets of

data points.

e N A
page 4o,

FORMATS FOR GRAPH:

CRAPH ([x1,x2,x3,...,xn],[y1,y2,y3,;..,yn],xlabel,ylabel)
Grapns the two sets of data points with the specified
labels. The labels may be omitted.

GRAPH ([[x1,y1],[x2,y2],[x3,33],...,[xn,yn]g,xlabel,ylabei)
Graphs the points specified by the 1ist of coorcinste
pairs. Again, the labels may be omitted.

The graphs produced by the above functions is = charscter
plot on a coordinate system defined by axes alons the mininum x
and y values of the plot. The x and ¥y coordinates are
independently scaled to optimally use the specified crapoing:
area. The origin of the graph (left-hand corner) is given iy
the values of xorg and yorg; the computed increments (= one
character) are given by the values of xdelta and ydelta. ihe
axes are labeled with the number sequence 0,2,4,6,3,0,2,4,...
as an aid in counting the number of increments from the origin,

When a graph is completed, the user must type a single
character, such as space or carriage return, to return control
to MACSYMA. On a display-tgfe console this causes the screen tc
be cleared for further MACSYMA commands.

Ixamples
(C3) PLOT(SIE(2%X)+C0S(.5%X),X,0,10)a

@ O, M
*
*

(o)}
*
3

W e Ol > b B
I
L]

%
*
*
¥

%
%

O N A O 0 ©O N &5 OV O O N
*®
*
%
%
*
*

02468024680246802468024680246802468
YORG=-1.95 XORG=0.0 XDELTA=0.13 |
(C4) POLARPLOT(RHO, NUMBREV) := BLOCK([THETA, P, LIMIT], NUMFR : TRUF,
RATPRINT : FALSE, THETA : 0.0, X : [], Y : [], LIMIT : 72%NUMBREV,
FOR I : 1 STEP 1 THRU LIMIT DO [P : RHO(THFTA), X:CONS(P*COS(TEETA),X),
¥ : CONS(P*SIN(THETA), Y), THETA : THETA + %PI/36.0], GRAPH(X, Y, ¥, Y))
(C5) F(T):=14+SIN(.5*T)*COS(T)$

EC6 SCOPFHEICGHTE
6

38

nare 50

(C7) LINFL@
§D7 | e
C8) LINTL:633
(C9) POLARPIOT(F,2)@
Y T
D 2]
E I % X KK %
I, of * * * ¥ * * X *
T f * * * ¥ *
A 8l * %K *
= I * * * *
8 6[* * *
. ¥ * *% ¥
1 4] * * * *
E T »* %%
- 27 * * *% *
2 T * * % *
O = * *¥% *
i * *
e = *% %* *
i * %
6[* *% *
3 * *%
41 * ** * *
Y i * *
2 % * *% *
i »* *% ¥*
of * * *% *
] * *3%
8- * * * *
[* *% *
6l * * *
3 »* * * *
47 * %% *
3 * * * * %
27 * % * * * K K K
r * K X X
of

02468024680246230246802468021405
YORG=-1.296 XORG=-2.052 XDELTA§5.7EP2

(D12) TRUE

pace U1

| 9.0 Rationhal Furctions
9.1 Basic Cormands

.. In order to clarify the discussion, it is nececsarv to
distinguish between the two major internal forms for exorersions
in MACSYMA. Ordinary MACSYMA form is a delimiter nrefix forr
vhich is typical of many list-processing implemertations of
algebraic manipulation systems. For example, 3x**2 would be .
represented (glossing over inessential details) as (times 3
(expt x 2)), and x+y as (plus x y). By contrast, the canonicel
rational expression (CRE) form in MACSYMA is an internal fornm
espe01a11y suitable for rapid manipulation of sparse polynorials
and rational functions. In CRE form, 3x**2 is represented,
(again, glossing over details) as (x 2 3). The first element of
the list is the variavle, the second is its hirchest exponent,
and the third, the coefficient of the just preceeding ex)onent.
Thus 6x**2 + 4 is represented as (x 2 6 0 4), and, allowing
coefficients themselves to be polynonials, y*x**2 4+ T*x*z is (x
2(y11)1(z17)).Since (y1 x22)0(x1(z17))) is an
equivalent CRE representation, it should be clear that the
ordering of variables must be specified to insure that
?quivalent CRE’s are identical, that is, they are in cancnical
orm.

CRE’s in general represent rational expressions, that is,
ratios of polynomials, where the numerator and denominator have
no common factors, and-the denominator is positive. Thus a CRE
has three essential parts: a variable list (VARLIST), specifying
the ordering of the variables, and two polynomial parts.

With these preliminaries, we can describe the actions cof
the rational function commands.

RATVARS(a,b,...) orders the variables listed in its
argument list on a global variable list (VARLIST) so that the
rightmost element of the list a,b,... will be the main variaile
of future rational expressions in which it occurs, and the other
variables will follow in sequence. If a variable is nissing from
the RATVARS list, it will be given lower priority then the
leftmost element. The arguments to RATVARS can be either
variables or non-rational functions (e.g. SIN(X)).

RATSIMP(EXP) rationally simplifies the expression EXP.
That is, EXP is converted into a single fraction, whose
numerator and denoninator are polynonials over the integers,
with no common factors. EXP is written in a recursive form: a
polynomial in the main variable whose coefficients are
polynomials in the next-higher-order variable, ..., whose
coefficients are integers. This is accomplished by ccnverting
FXP into CRE, and then converting back to ordinary MACS3YLNA form
for display.

For example:

i
~
)

pace

(c1) (X**ZeY**Q)*(Z**2+2*Z)/((X+Y)*W)@

2 2 2
(X =Y)(Z +22)
W (Y + X)

(D1)

(C2) RATSIMP(D1)@ ,
(X=-Y)2Z +(2Xx=2%) %

(p2)
W

(C3) RATVARS(X)$
(ca) RATSIMP(D1%@.)
X(2 +22)-Y2 -2Y7Z
W

" FACTOR(EXP) factors the expression EXP into factors
irreducible over the integers. If EXP is a rational expression
(with a denominator not 1) both numerator and denominator are
factored. If FACTORFLAG is set to TRUE, the integer multiplier,
if any, is factored also. The algorithm can be used to factcr
polynomials in any number of variables; however, factorization
with respect to some of the variables can be avoided by setting
the globael variable DONTFACTOR to a2 list of such variables.

(D4)

For example,

(C5) FACTOR(X**6+1)@

2 4 2
(D5) (X +1) X =X +1)

. SQFR(EXP) is similar to FACIOR except that the polynomial
factors are "square-free" that is, have no multiple roots. Uihis
algorithm, which is also used by the first stage of FACIOR,
utilizes the fact that a polynomial has in common with its nin
derivative all its factors of degree > n. Thus by taking
derivatives with respect to each variable in the polynomial, all
factors of degree > 1 can be found.

PARTFRAC(EXP,VAR) expands the expression EXP in partiai
fractions with respect to the main variable, VAR. The algoritan
employed is based on the fact that the denominators of thne
partial fraction expansion (the factors of the original
denoninator) are relatively prime. The numerators can be written
as linear combinations of denominators, and the expansion Ifalls
cut.

pare 57

(C6) PARTFRAC(X/(X**2-1),X)@

1 1
(D6) +
2 X-2 2 XL+ 2

9.2. Contagious CRE Commands

The commands in this and the following sections reprecent
significant departures from the usual use of rational function
routines.

RAT(EXP) is indistinguishatble on command level fron
RATSIMP; however, RAT leaves its internal result in rational
function (CRE) form, so that operations used by the rational
function commands described here can be more rapidly perforned
on it. Furthermore, any time the user adds to or multiplies by a
CRE, the result is a CRE. That is, the CRE form is "contagious."
This enables a user to easily force his entire calculation tc e
done in CRE form by converting one of his inputs into CRE by
simply multiplying by RAT(1). Some problems require excessive
amounts of storage and/or time if intermediate results are
converted back into prefix form at each step of the calculation.
The RAT facility, by being integrated into the simplifier,
permits a user to compose a program and try it out (without any
changes) on ordinary prefix form arguments or on CRE arguments.
In this manner it is simple to compare the timing of "general
versus CRE methods on the same task. This very often
gemonstrates that CRE methods, when appropriate, are much

aster.

RATDISREP(EXP), which appears to do nothing on the command
level, changes its argument from rational function form (CRE) to
ordinary MACSYMA form. This is sometimes necessary in order to
use some of the other MACSYMA commands. If RATDISREP is not
given a CRE for an argument, it does nothing.

G.3. The Rational Coefficent Program

RATCOEF(EXP,PART) returns the coefficient, C, of the
expression PART in the expression EXP. C will be.free (except
possibly in a non-rational sense) of the variables in PART. If
no coefficient of this type exists, zero will be returned.
RATCOEF will give reasonable answers to reasonable requests, and
will often produce reasonable answers to poorly stated requests.
Generally, when PART includes a "+" or a "/", results may seen
odd. (see lines D7, D8, D10, and D11 in the examples to follow).
Since EXP is rationally simplified before it is exanined,
coefficients may not appear quite the way they were envisioned.
The effect of RATCOEF should be clarified by the following
examples.

(C1) S:AX¥B*X**24B*X+2%X+50@
g

| 2
(p1) ABX +BX+2X+5
(C2) RATCOEF(S,X)
(D2) B+2
(C3) RATCOEF(S,A*B)@
(D3) X
(C4) RATCOEF(S,B)@
(D4) AX +X
(C5) RATCOEF(S,2*X)@

B+ 2
(D5) '
2

2083 RATCOEF(B*A+2*B,§+B)@

D8

(C9) RATCOEF(S,-A)@

(D9) | _BX

§g}}g RATCOEF(B*A/D+A/8**2, A/D*x%2)@

2 S%'Si RATCOEF(Z**Z*X**%H Y+Z)*X+A, (Y+Z)*X)e
§g}gg RATCOEF(X**2*Z**8+X*Z+X*Y+A,X*Z+X*Y)@

The last two examples illustrate both the ability of the
user to ask for coefficients of sums, and the ability of RATCOEF
to sometimes answer correctly. We could have defined RATCOEF
only for products, but it seems more in keeping with the spirit
of an interactive system to avoid such restrictions on the user.
Note that if the user were disappointed with the answer O to the
above request, first executing RATVARS(X) would correct the
situation.

In summary, RATCOEF will find the coefficient of PART when
PART is a factor of the expression, or of some part of the
expression such that the other factor has none of the same
variables. The returned value is in CRE form.

An alternative to RATCOEF is available in situations where
its flexibility is not needed. The COEFF command can operzte on
CRE forms or on ordinary MACSYMA forms which have been expanded.
COEFF(FXP,VAR,POWFR) will extract the coefficient of VAR**POVER
(where POWFR may be O) from FXP. COFEFF returns a CRE form if
and only if it is given a CRE forn.

pare 55

9.4 Simple Extensions to Rational Simplification

RADCAN(EXP) converts the expression EXP into a forn which
is canonical over a large class of expressions and a given
ordering of variables; that is, all functionally equivalent
forms are mapped into a unique form. Ior a somevhat largcer class
of expressions, RADCAN produces a normal form; that is, all
forms equivalent to zero are mapped into zero. Ior purely
rational expressions, RADCAN is no more time-consumirns than
RATSIMP however, for more general expressions including
radicals, logs, and non-integer exponents, RADCAN can be quite
expensive. This is the cost of exploring certain relationships
among the components of the expression for simplificatiors besed
on factoring and partial-fraction expansions of exponents.

The following examples. should give a rough feel for the

capabilities of RADCAN. (% always refers to the just-previousl
displayed expression, #E is the base of the natural 1ogarithmsg:

(C3) (SQRT(X**2-1))/(SQRI(¥-1))@

SQRT(X - 1)
(D3)
SQRT(X - 1)
§C4§ RADCAN(%)@
D4 SQRT(X + 1)
(C5) (LOG(A**(2%X)+2%A%*X+1)) /(1OG(A**X+1))@
2 X X
I0G(A +2A + 1)
(D5) "
LOG(A + 1)
%)@
éggg RADCAN(%)@
(CT) (BE**X=1)/(FE**(X/2)+1)€
X
IE - 1
(o7) X/2
D / + 1
(CS) RADCAN(%)e@
X/2

10.0 The SOLVE Program

The SOLVE command in MACSYMA uses several techniques for
solving for a given variable in an equation. Fach of these
techniques is open to extension in a straightforward manner.
The roots and their multiplicities are available to other
programs, and are used as building blocks for more complicated

vvvvv

facilities, such as contour integration.
The format of the SOLVE command is:
SOLVE(equation, variable)e

where the equation may also be an expression (which is assunmed
to be set equ 0 zero), or a set of polynomial equations
linear in some set of variables. This last case is a strzight-
forward problem in Gaussian elimination, and will not be
discussed further here.

SOLVE(E,X) puts its first argument E, in radicel cenonical
form, and attempts to factor it with respect to the variable X,
and all non-rational functions in E containing X. Fach factor is
examined for being linear, quadratic, cubic, or biquadratic with
respect to X and the non-rational functions containing it. If
the factor is of degree five or more, then it is considered
unsolvable unless it is of the form a(F(X))**n — b in which case
the n nth roots of b/a are generated, and the n equations F(x)-
(b/a)**(1/n) = O are solved. Any remaining unsolved factors and
their multiplicities are put on a list which is returned along
with the roots. ‘

Linear terms of the form F(X)-C are examined to see if C,
the constant term, is actually free of elements containing X; if
so, USOLVE is called. Otherwise the term is added to the list of
- unsolved factors. USOLVE knows the inverses of SIN, COS, ARCSIN,
ARCCOS, TAN, ARCTAN, LOG, and powers of e. It could be extended
to other functions. Once the inverse has been applied, a new
equation results. It may be of the form X = FINVERSE(C), in
which case the term has been solved, or it may be of the form
G(X) = FINVERSE(C), in which case SOLVE is called agmin. This
recursive algorithm allows for solution of, for example,
SIN(CO3(X)) = O for X. '

The quadratic (cubic, biquadratic) formula is applied to
cuadratic fetc.) factors, and the same sort of recursive .
treatment as described above is used if the equation is, for
example, quadratic in SIN(X) instead of X.

The simplification done by the quadratic (etc.) routines
is of some interest, in that the roots in the formulae are
simplified by a special program (SIMPNRT) which takes out
perfect n*k powers of a kth root. (i.e. even powers in a square
root, nultiples—of-three powers in a cube root, etc.) Thus
SGRT(8) is simplified to 2*SQRT(2). SIMPKRT calculates a square—
free factorization of the radicand, and takes appropriate
multiple factors, if any, outside the radical.

pagre 57

The following examples illustrate the capabilities of
SOLVE:

(€C1) SOLVE(Y**(2#X)-3#Y*%X+2=0,X)@

SOLUTION
(E1) X=0
| 10G(2)
(E2) =
LOG(Y)
(D2) (E1,E2)
(C3) A:X**2-12%X+3@ 5
(D3) X =12X+ 3
(C4) SOLVE(SIN(A)**2-5%SIN(A)+3,X)@
SOLUTION
o - 5 SQRT(13)
(B4) X =6 - SQRT(ARCSIN(E - -——5-——-) + 33)
5 SQRT(13
(E5) X = SQRT(ARCSIN(E - -_5__f2) +33) + 6
SQRT(13) 5
(F6) X =6 - SQRT(ARCSIN(-——E-—- + 5) + 33)
 SQRT(13) 5
(E7) X =

SQRT(ARCSIN(-——E-——— + 5) + 33) + 6

(D7) (E4,E5,E6,ET7)

pare 5&

(c8) SOLVE(ARCSIN(COS(B*X))*(F(X)~1),X)@

SOLUTION
ARCCOS(0)

(E8) X = e ©

3

THE ROOTS OF

(D9) (E8,E9)

(C10) SOLVE(5**X=125,X)@

(D10) ‘ _ X=3

Note that SOLVE has taken advantage of radical :fproaches
but is still able to step back and treat fairly gener: \
expressions In order to use the "radical" polynomial factoring
program, it uses RADCAN to expand unlikely-looking expressions
into polynomials. Thus the expression Y**(2¥X)-3Y**X+2 in C1 is
expanded into a polynomial in Z, where Z=Y**X (actually
Z=e**(X*10G(Y))), which is then factored into (Z-1)*(Z-2). By
setting each of these factors equal to zero, the following
sequence of steps is followed: ,
e**(X*I0G(Y)) = 1 = 0 is converted by USOLVE to
§ %og§¥; = log(1) which the simplifier changes to
og
SOLVE is called recursively, and factors this; SOLVE
throws out the log(Y) factor since it does not depend on X, and
the factor "X" is recognized as a linear expression of the form
aX+b where a=1 and b=0, which has solution X=-b/a, or in this
case, X=0. The other root is handled in an analogous fashion.

—
— -

11.0 Lebuggil

When the user’s commands,
programs, do not do what he exp
offers him several debugging al

51) He may trace any of hni
TRACE(funi,fun2,...), where the
defined functions. Upon typing
the same length, with FALSE ins
function does not exist. This
function name and its arguments
the function name and the value
exited. A count which is the
printed. Usually, this is all
need, although MACSYMA offers h
LISP tracing package including
tracing. 1s-will not be des
the A.J. Lab LISP Interim Repor
MACSYMA uses trace-syntax very

‘ To check which functions
user may type TRACE().
UNTRACE(fun1,fun,...). To unt
functions type UNTRACE(). Sinc
of the user’s workspace in core
should type REMTRACE(). He may
tinme. ‘

3

=)
-

it

~

U

L

To remo

(2) By setting the variabl
informed when each of his varia
for evaluation for the first ti
computation. This has a dual
informed of evaluations he may 1
the result of assignments he mag
sort of chronological trace of }
helpful in finding out where an

(3) By setting the variable
wvill be informed of predicates d
failed to evaluate to either TRU
automatically in the midst of B

(4) The user may have vari
purely symbolically, i.e. they
Ey typing BIKDIEST(vari,var2,..
error whenever any of the vari
To remove a EINDTEST declaratio
REMOVE. (see section 5.8)

(5) Yhen an error occurs i
FACSYHA prints out an error mes
computation. At times the user

page 5¢

he in FMACSTHA

specially functions and
cted or generate errocrc,
ernatives:

T e
S LUCHE

’ P T '.’ ,‘l‘
adtwns Ll

function calls by typing
funi are eitner [ACSYIA or user—
this, MACSYIMA returns a list of
ead of a function nane if o
ill cause a printout of the
eacn time it is entered; and of
it returns ezch time it is
evel of recursion is alsc
he tracing power the user will
m the full capabilities oi the
onditional and breakpoint
ribed here - for infornation see
(A.I. Memo 190), Appendix D.
imilar to that of LISX.
e currently under trace, the.
e tracing of functions use
ace all previous traced @ .
the TRACE package takes up some
when he is finished with it he
alwvays reload it at a later

DEEUG to TRUE, the user will be
les which has a value comes up
e during the course of a
urpose. The user will be
ot have been aware of which are
€ long ago. It also gives him =
is computations which may be
error has occurred.

PREDERRCR to TRUE, the user

I IF-TEEN-ELSE statements which
I' or FALSE. This happens

CK programs and ¥FOR statements.

vles wnich he intends not to use
e to have values all the tiuwe.
) HACSYHA will give the user an
pear in a computation urnbound.
,» the user may use the function

tne course of a computation,
ge and terminates the
y find it helpful to

investigate the environment at the place of tne error. Lo d¢ ¢
ne may type DEBUGMODE(TRUE) and repeat nis computation. ‘thic
enters a special debugging mode which will "treak! or pause wucn
an error occurs., This mode may te terminated oy typing
'DEBUGMODE(FALSE). Vhen an error occurs in debusging modc,
(ERROR-BREAK) is printed out. MACYSHA is then waiting fer tuc
user to type something. He may type any command just as if ac
vere at "top level”. The commands will be evaluated in tne
environment of the error. If the user t{pes DACKTRACE:, 1/ COLN
will print out a backtrace, which is a list of the function
calls the user is currently in together with the arguments tiey
vere called with, ordered from most recent to earliest i.e.,
when reversed, this list shows a trace beginning from tae
initial command and ending at the last call entered including
only those function calls from which the user still has not
exited. (For those users who know LISP, one may type control-I
and enter a similar LISP break-loop. When altmode-P space is
~ typed, thus exiting from the LISP break-loop, the HACSYHA break-
loop is re-entered.) To exit from the MACSYIMA error—break and
return to "top-level*, type EXITE. ‘

The user may also enter the error-break at any point, by
typing control-A. This will simply cause his computation to
pause, while he investigates at will. Upon typing EXIT@, his.
computation will resune.

. Ay
12.0 The MACSYMA Iditor

12.1 Introduction
| The major features of the MA(
§alphabetic character commands, &
14 of them), concatenation of coj

o]
A
Ch

\

SYHA editor are single
varied assoriment oi commoais
mends as in TECO (the =I76/10

file editor), mmemonics for commar
as R means "move in the Reverse d

d names (once you know her,
Aisaths

" B means "move to the Bottom" and rot "nmove Backwards™), and

compatibility with TECO as to com
r, G, I, J, ¥, L, R, and 3).

12.2 Entering the Editor

3:jction" and not "move

id nanes (in the case of C,

At any time while the user ig
MACSYlMA, he may enter the input-s
editor is given the string of c
current input command. In the c
upon typing # the entire previous
to the editor. Before typing in
nay always elect instead to edit
this manner. One may also reques
a previously accepted input comme
in MACSYMA. 'Typing STRING(Ci) to
expression labeled as Ci as the c
enables the user to modify it by

All the commands to the edit
(iisplayed as an underscore or ba
console) which is displayed withi
string of characters currently un
string" from now on). The editor
must be terminated by ##. (<alt-
to # for in order to maintain the
string is any concatenation of ong

will be processed in left-to-righf order.

string occurs at the end of the 11
string. # is used to enter the ed
(as ##), and to terminate insert ¢
Otherwise, spurious #°s are ignore
delete key on the console) may be
command termination to delete the
is echoed at the console.) 9?7 del
any point prior to command termins
<control>K, and the editor will re
command typed so far. This is usd

inputting a command to
eam editor by typing i.
acters typed so far in the
e of a detected syntax error,
command string will be r~iven
he next command string, one
he previous command string in
the editor to edit or modify
d bty using the STRING command
MACSYMA will restore the
rrent input string. This
yping #.
r reference a cursor
k-arrov, depending on the
or at either end of the
er edit (called the "input
accepts a command string which
ode> has been made equivalent
similarity to TECO.) A command
or more legal commands which
Display of the input
ocessing of each command
itor, to exit from the editor
r search substrings. .
d. Rubouts (the rubout or
used at any point pricr to
last character typed in (which
etes the entire command. At
ltion, the user may type a
print the characters of the
ful in case excessive rubouts

Tne

have obscurecd the sequence of chaTacters in the command string.

nare 62

12.3 A Description of the Commands

Sone commands may be prefixed by an integer (renresentec
below by "n") which usually may te positive or nesative;
although it may be O as well in the case of K, I, and %; and it
must be non-negative in case of W. The default value of n is
+1. Except in the case of R, if n is positive the commands
operate toward the right of the cursor, if n is negative they
operate toward the left. Only I and S may be suffixed. An
error message will be printed if an illeral command subslrine is
- encountered or if any command substring fails. In case of such
error, the processing of the current comrand stringe will bhe
terminated at that point, with the offendings command suhetrine
indicated.

Command Mnemonic Action

- (Commands which move the cursor)

nC Character moves the cursor n characters.
nR Reverse ‘moves the cursor n characters in the
reverse direction (nR = -nC).
J or Jump to top
T Top moves the cursor to the head of the input
string.
B Bottom moves the cursor to the end of the input
string.
nL Line moves the cursor to the right of the nth

carriage return (OL moves left); e.g., L
moves to the next line.

nSstringf Search moves the curscr to the right (left if n
is negative) of the nth occurrence of
"string" in the input strings.

(Commands which delete characters)

nD Delete deletes n characters, and saves them in
the "save-register" Zsee the G command
below).

nkK Kill deletes all the characters tnroursh the nth

carriase return (OK kills left), and saves
them in the "save-register"; e.r., K
deletes the remainder cof this line.

Soreen
vare

(Commands which insert chardcters)

Istring;’ Insert inserts theﬁcharacters "strine" at the
S

current cur

or position. Tae curser iso

positioned gt the right of the inscertec

text.

G Get inserts at
characters
Ke Thus G
Dor XK tonm
to another i

(Commands which control disrt

e current cursor ~nosition tre

leted by the last use of © or

¥y be used in combination witn

e characters fron one place
the input strins; or to

an accidental use of T or .

Y one "save-rerister”.

ay of results)

P - Print simply repripts the input string. This is
: useful in cafe of console problems.

nW Window controls the
which is the
displayed on

windovw size of the display,
naximum number of characters
each side of the cursor.

This is useffil in case of slow consoles

and large in
only the cur

V View restores the
is the norma

will exit from the editor
terminator. Two examples of legal
4(C3DIF007# and —2SBARj#3R##. The f
characters, deletes the next three
Tre second searches from the curre
beginning of the text for the seco
mcves left over three characters.

put strings. OV will cause
sor to be displayed.

display to full view, which
| mode (affected only by V).

nd is also the command string
command strings are

jrst moves right over four
characters, and inserts FOO.
Wt pointer position to the

nd occurrence of EAR then

Appendix

Following is 2 condensed version of the srammer for LACHYIA
along with an informal explanation of some of the rules. iote
that an expression, through syntactically correct, mey nct be
mesningful as in FLX):1. This will pive the messace ITLIGAT
VATLUE ASSICNMENT if typed to MACSYMA.

The following notation is used. EPraces with a subscrint of
O mean that one or none of the quantities enclcsed are to be
chosen. Braces without 2 subscript mean that exactly one of the
enclosed quantities is to be chosen.

A line typed to MACSYMA is called a Sentence. Tais is the
starting symbol for the grammar and is defined belov in terns of
successively smaller perts until finally reaching o terminal
quantity. Terminal symbols are written entirely in capital
letters while only the first letter of non-terminal syrbols is
capitalized.

-~ — — - - —— - — —-— — -— -— —— — - —— e — -— e — —

1. Sentence ->
iag Statement
b) Statement, Statement, ... , Statement

e 2 @Gm W e GES M s e . e wwm emm e sme em ms e AR Gm e wm e e

2. Statement —>
Expression

Qfunction : Expression
Qfunction :: Expression
Qfunction := Expression

OO oD

THRU Statement
WHILF Expression
UNLESS Expression

3. Ixpression ->

a .
b% Grelation
c) Grelation OR Expression

- @ emy eme eme s e ws emt eEs %R R dme s @mm @as @me M mm e e e e

4, Grelation => ‘
éag Relation :
k Crelzation AND Relation

FOR Quantity : Expression { STEP Expression },

IF Expression THEN Statement { ELST Statement },

5.

6.

Te

10.

Relation ->
(a) Sum

e

VA

(b) Sunm

NATAS
]

o em s ms ek em ase e e

Sun -
(2) {;} Term
+Jo
(b) Sum {+} Tern
Term -=>
a) Tactor
b) Factor . Tern
c) Tern *} Fact
/‘
Factor ->
a Base ;
b Base *¥* [a
Bese -=>
a) ()
b) Dase !
c Qfunction
da) ° 7 Qfuntion
e

{;} Quantity
(f) (Arglist)

- -~ -— - - - -— - — <

Qfunction ->

| (a) Quantit
ﬁb Quantit
Cc Quantit

~

T

Sun

- s s @» W e P EG G o s e an @e @w @G s @ma e e e

11. Quantity ->
%} Atom £
‘ is
c gégﬁ[Arglist]
12. Arglist -> ‘
ag Statement
b) Statewent, Statement, ... , Statement

. a) Integer
b) Fpnumber
c) Symbol

Bibliography and References

1. A.C.M. Proceedings of the Second S%mposium on Symbolic and
Algebraic Manipulation, Los Angeles, Calif., llarch, 1971.

2. Fateman, Richard J. "Essays in Algebraic Simplification® -
Ph.D. Thesis - M.I.T. MAC TR-95

3e ——, "MACSYM User’s Manual®

4, ——. Martin, W.A., Moses, J., and Wang, P.S5. "The MACSYHA
Papers® 1970

5. Moses, Joel M. "MACSYMA Primer®

6. Mcg?rthy, John, et. al. "LISP 1.5 Programmers Manual® M.I.T.
ess

7. White, John L. "An Interim LISP User’s Guide” A.I. Memo 190 -

8. Eastlake, Donald E. "ITS Status Report" A.I. Memo 238 — April
1972 haad I‘ioIo‘To '

9. Wang, Paul S. "Factoring Multivariate Polynomials Over the
Integers" - to appear.

10. Van der Waerden, B. L. "Modern Algebra® Volume 1.

11. Heindel, lee E. "Integer Arithmetic Algorithms for
Polynomial Real Zero Determination® in [1].

