L A
TO: J. L. BASH
Go D. BENN—ETT) W’)’Y,\[v(.\(ryv)-
G. D. CHANG .
C. T. CLINGEN] .
F. J. CORBATO Ner W '
R. C. DALEY , N
J. W. GINTELL bt G
J. D. MILLS _ ; . : _
J. H. SALTZER' - ex g ey
B. L. WOLMAN ,
FROM: R. A. FREIBURGHOUSE : 1 ke o geeY e
SUBJECT: PL/I MANUAL %9\ Ao MM 1
DATE: AUGUST 27, 1969

Atteched is & draft of the User's Guide to the Multics PL/I
Implementation. Due to the lack of sufficient time to permit
retyping, this copy is the original draft with hand-written
editing notes. Your comments and suggestions are welcome.

In order to meet our publication deadline, all comments must be

received by September 10, 1969.

/11

(enclosure) | L}ix—
‘M
e v “)(\‘Wl\(\ | /tMQM

>) wk&ﬁ‘ { 1QQ“L‘

N W*QMPM v e o Mw W
LN o W Qt
_ y p

elg A - - Yo

A USER'S GQUIDE TO THE MULTICS PL/I IMPLEMENTATION
R. A. Freiburghouse

Je. D, Mills
B. L. Volman

INTRODUCTION

This document supplies the prospective Multics PL/I user with
detailed information about the Multics PL/I implementation.

It is a .supplement to the Multics PL/I Lenguage Specification and
should be read by programmers who have a reasonable understanding
of the PL/I Language. It was written primarily for use by
Multics system programmers bubt selected portions may be used by
any PL/I progrermer. Sections (1,2,3,6,7,8) are of general
interest while sections (M,S)Amay be of interest only to EPL
programmers. Readers who do not ha e a copy of the Multics

PL/I Language Specification may temporarily use the PL/I Language
Specification published by the IBM Corporation, publication number
X33-6003-0. The IBM document describes a language vhich is a
superset of the Multics PL/I language. It may be used to initiate
the reader to PL/I, but before writing programs he should obtain

a copy of the Multics PL/I Language Specification.

Th
1.
1.2 Usage
1.
1.
1.

\J"I-F‘UOI\)!—‘(D

CONTENTS

PL/I Command
Purpose

Command. Optlons
Error Diagnostics
Listing

The Machine Representation of PL/I Data
2.1 Scalar Data

2.1.1

(o

L] .
. .

1
2
3
i

. .

DML DD DD NN N
L]
O e
o - N0 00— OV o N

Real Fixed-Point Short.
Real Fixed-Point long
Real Floating-Point Short

'Real Floating-Point Iong

Aligned Non-Varying Bit String
Unaligned Non-Varying Bit String
Aligned Non-Varying Character String

Unaligned Non-Varying Character String

Varying Bit String
Varying Character String
Pointer

Offset

Label

Entry

2.2 Aggregate Data

2.2.1
2.2.2

Arrays
Structures

2.3 Data Type Codes Used in PL/I Descriptors

The PL/I Call and Argument Passing Conventions
3.1 Arguments .
3.2 Argument Descrlptors

3.2.1

Descriptor Formats

2.3 The Format of a PL/I Call

Argument Compatability Between PL/I and EPL

.1 Restrictions on the Types of Arguments

4.2 DNotes on the Use of the Compatibility Feature

4.3 A Detailed Description of the Modifications
Made to EPL Object Code to Implement the
Compatibility Feature

e

as)
0
q
[¢:]

VWO OV VOO oll-lJooonononogvwitvunvnua &4 FoOooHHH

CONTENTS (Continued)

Page
The Conversion of EPL Programs to PL/I Programs 15
5.1 Fixed-Point Division . 15
5.2 The Length Built-in Function 15
5.3 Bit String to Arithmetic Conversion 15
5.4 Use of the Returns Attribute 16
5.5 The Significance of the Entry Attribute 16
5.6 Label Arrays as Transfer Vectors 19
5.7 The Use of cv-string and char(*) Declarations 19
5.8 Simple rules for Converting EPL Array or 20

Structure Declarations to Equivalent PL/I Declarations

5.9 The Effect of the Alignment Attributes on

Storage Allocation and on the Packing of Arrays
and Structures
5.9.1 Definitions
- 5.9.2 The Storage Allocation Rules of the
' PL/I Compiler
5.10 The Effect of the Alignment Attribute on the
Accessing of Based Variables and Parameters

ps on Writing Efficient PL/I Programs
1 General Comments
2 The Use of Entry Declarations
3 DParameters
L Begin Blocks
5 Internal Procedures
6 Accessing Code
6.6.1 The Effect of Block Structure on Accessing
6.6.2 Static Storage References
6.6.3 References to Based Storage
6.6,k The Design of Aggregates and their
Effect on Accessing Code

6.7 The Efficient Use of String Data

6.8 Label Variables

6.9 Use of the Initial Attribute

6.10 Multiple Assignment Statements

The Implementation of PL/I Storagé Classes

Automatic Storage
Internal Static
External Static
Based Storage

~N3
* o
W0

21
21

21

22

23
23
23
23
24
oL
oL
oL
2l
oL

25
26
27
27
27

28

- 28

28
28

29

L e

CONTENTS (Continued)

Page

8. The Fundamentals of Multics for PL/I Progfammers 30
8.1 Segments and Directories 30
- 8.2 A Process : 30
8.3 Dynamic Linking _ 31
8.4 The Search Mechanism 31
8.5 The Hidden Dangers of Dynamic Linking 31
8.6 A Process and the Execution of a.PL/I Program 32
Appendices
A PL/I Compiler Generated Error Messages

B Error Messages Generated During the Execution of a PL/I Program

1.-

1.1‘

1.2.

WW cgoﬂdfﬂe |

THE PL/1 COMMAND

Pur.gose %\? 747(% 07[A’- ﬂw éxvz{/tﬂ/

The pl1 command invokei);he PL/1 compiler to translate a segment
containing Pfl-souree~eede into a MULTICS object segment. A listing
segment may also be produced. These results are placed in the user's
current working directory. ' ' '

Usage
The command
pl1 pathname —opfl— . « « -optn-

invokes the PL/! compiler to translate a PL/I source segment identified _
by pathname. (The typed command consists of the letters "pl" and the

~numeral "1"). A directory path name and an entry name, segname, are

derived from pathname by calling expand_path_ (Ref.BS.13.50) and the
compiler takes its input from segname .pll. optl, . . ., optn are
optional arguments to the compiler whose interpretation is defined
below under "Options™. o

A normal'compilation,will produce an object segment, segname and leave

it in the user's working directory. If segname existed previously

in the directory its ACL is saved and given to the new copy of segname.
Otherwise the user is given RE access to the segment with ring brackets

"V 48 48 where V = validation level of the process active when the

object segment is created.

‘The user's options will control the absence or presence of the listing

segment for segname.pll and the contents of that listing. "If created,
the listing segment is named segname.list. The ACL is as described

- for the obgect segment except that it is %iven RWA access when newly

created. Previous copies of segname and (if the list option is.on) 4
segname.list are replaced by the new segments created by the compilation.

Note that because of the MULTICS standard which restricts the length
segment names, a PL/! source segment name may not be longer than 25
characters. '

The pl1 command will look for the presence of "%"; as the first two _
characters in segname.pl1. The presence of such characters implies that
segname.pl1 contains "% include" compile-time statements. pl1, there-

fore, creates a new source segment with all "% include" statements expanded.
The compiler then takes its input from the expanded results, and the
segment segname.ex.pll is left in the working directory.

’ 1-3-

1.4,

Command Options

In the absence of the full MULTICS option machinery, character string
arguments to the command provide the user with a certain amount of control
cver the output from pl1, The options are summarized here. Further
information is contained under "Error Diagnostics™ and "Listing".

»

Option o Result
"source" © e ‘ pl1 produces a line-numbered printable ascii

 ljsting of the source program, The default
s no listling. ' :

the variables déclared in the

"symbols" 2
{th their attributes, The default

"assembly_lis{" Produce an assembly-1ike 1istfng of the +es+7'(%u7mﬁu%7
ed,. 4.t
The éefault.is no assembly listing. éiyﬂﬁ# f

. . JP/WU
"Mist" _ Produce a listing of the source, symbols, and
: assembly listing. The default is no list. "list"
is equivalent to "source", "symbols", and
"assembly_list".

"brief™ ' Error messages written into the stream "user_output”
will contain only an error number, statement
identification, and when appropriate the identifier or
constant in error. In the normal, non-brief mode
an explanatory message of one or more sentences
will also be written. ‘

"severityi" . Error messages whose severity is less than i
- (where i is 1, 2, 3, or 4, e.g. severity 3)
s - will not be written into "user_output" although
" T all errors will be written into the listing.
. The default is 1. .

"check® Used for syntactic and. semantic checking of a PL/1
: ' (or epl) program.’ Only the first three phases of the
compiler are executed, Code generation is skipped
as is the manipulation of the working segments
used by the code generator.

Error Diagnostics

The PL/! compiler can diagnose and issue messages for apout 3 different
errors. These messages are graded in severity as followgm ¢

Severity Level Meaning
1 - VWarning only »_compila{ion continues without

ill effect,

2

Severity Level Meaning

2 Correctable error - the compiler remedies the
situation and continues probably without
i1l effect. For example, too few end
statements can be and is corrected by
simulating the appending of a sufficient number
of strings ";end;" to the source to complete .
the program. Thls does not guarantee the
right results however,

3 I An uncorrectable but recoverable error. That .
is, the program is definitely in error and
cannot be corrected but the compiler can and
does continue executing up to the point
Just before code is generated. Thus, any
further errors will be diagnosed.

4 An unrecoverable error. The compiler cannot
continue beyond this error. The message is
printed and then control is returned
“to the pl1 command unwinding the compiler.
The command writes an abort message into
"user_output" and returns to its caller.

Error messages are written into the stream "user_output" as they occur.
Thus, a user at his console can quit the compilation process immediately
when he sees something is amiss. As indicated above, the user can set
the severity level so that he is not bothered by minor error messages.
He can also set the brief option so that the message is shorter. An
example of an error message in its long form is:

ERROR 281.1 IN STATEMENT 1 ENDING ON LINE 17

The entry name‘zilch’ has been declared internal but has not
been defined within the block of declaration,

If the brief option had been set the user would see instead:

ERROR 281.1 IN STATEMENT 1 ENDING ON LINE.17
zilch ¢

In the second case the user could look up error number 281 in appendix A
of this manual and get the full message. The digit after the decimal
point in the error number is the severity of the message. Thus, if the
user had set his severity level to 2 he would have seen no message at all.

If the listing option is on, ‘the error messages are also written into
the listing segment. They appear, sorted by line number, after the
listing of the source program. Because of an implementation restriction
no more than 100 messages will be printed in the listing,

1.5. Listing

The listing created by PL/! is a line numbered image of the possibly
expanded source segment, . This is followed by a table of all of the

variables declared within the program. The variables are categorized
by declaration type which are: : '

4

-

1. Declare Statehent

2. Explicit Context (labels, entries, and paramete?s)

- (Z
3. lmplicinqiiiiéZ;I;;t :

Within these categories the symbols are sorted alphabetically and then
listed with their location; storage class; data type; size,
precision, or level; and attributes such as "initial", "array",
"abnormal®, "internal", "external™, "aligned", "unaligned", and
"irreducible". The symbol listing is followed by the error messages.

Finally, the listing contains the assembly-like listing of the object
segment prodiuced. The executable instructions are grouped under an
identifying header indicating the source statement which produced the
instructions. Opcode, base-register, and modifier mnemonics are printed
alorig-side the octal instruction. The addresses are numerical but

if an identifier or constant corresponds to the address it is printed in the
nremarks" field of the line. Constants and links are printed with

symbolic interpretation also. ‘

2. THE MACHINE REPRESENTATION OF PL/I DATA

This section defines the representation of PL/| data in the GE 645.
It includes a list of the data type codes used in PL/I argument
descriptors but does not contain a description of the PL/I call or
argument passing conventions. Refer to section 3.0 for a discussion
of the PL/I call, :

2.1 Scalar Data

. s®

The following is a description of the representation of Scalar Data.

The term "double word" is defined to be two adjacent 36-bit words, the
first of which is located at an even storage address. In the description
of arithmetic data p is understood to be the binary precision of the data.
Data declared with a decimal precision is represented as a binary

value whose precision is determined from the declared decimal precision
according to the rules of the language. :

C2.1.1.

2.1.2,

2.1.3.

2.1.4.

(type 1) Real flxed point :SLLO\r+’
A real fixed- point datum of precision 0<p<35 is stored as a 645 Slngle
A 35

word integer.

where n is a signed integer in 2's complement form.

(Type 2) Real fixed-point Liifij
A real fixed-point datum of precision 35<p<71 is stored as a 645 double
word integer, } ‘

01 35 36 71

n

where n is a signed integer in 2's complement form.

(Type 3) Real floating-point fshou~+

A real floating-point datum of precision 0<p<R7 1s stored as a 645
single word floating-point number,
01 789 35

N
o v

‘~. -~

where e is the exponent and m is the mantissa. Both e and'm are
signed integers in 2's complement form.

(Type 4) Real floating-point Loaﬁj
A real floating-point datum of precision 27<p<63 is stored as a 645

double word floating-point number.
01 789 35 36 71

|

e . m

where e is the exponent and m is the mantissa. Both e and m are signed
integers in 2's complement form. ’

. 2.1.5.

2‘1‘6.’

2.1.7.

2.1.8.

2.1.9.

Al|jﬂ€j |

(Type 519)¢&on-\%rying fit String

An aligned non-varying bit string is a set of contiguous bits which
begins with the legtmost bit of a word and extends through as many words
as are necessary to represent the string. The leftmost bit of the string

is bit 1 while the rightmost is bit n.
Vualgued
(Type 519)JNon-Vgrying fit é&ring'

An unaligned non-varying bit string is a set of contiguous bits
which may Begin on any bit of a word and which extends through as
many words as are necessary to represent the string. The left-
most bit of the string is bit 1 while the rightmost is bit n.

/)/(/7,06:[

(Type 520) VNonJVérying Character gtring

An aligned non-varying charadter string is a set of contiguous

9-bit bytes each of which coftains a 7-bit -ASC11 character right
Justified within the byted. /The string begins on the first bit of a.
word and extends through as/many words as are necessary to contain

the ‘'string. The lef{posi character is character 1 while the rightmost is
character n, ' -

(/A/ﬁ/{j/’ >4
(Type 520)¥ Non-Varying éharacter gtring

"An unaligned non-varying character string is a set of contiguous .

9-bit bytes each of which contains a 7-bit ASC11 character right
Justified within the byte. The string may begin on bit 0, 9, 18,

or 27 within a word and extends through as many words as are necessary to
contain the string. '

A varying bit string is a compound datum consisting of a real fixed point

(Types521) Va,ryin.g,,,git ‘gtlr ing , - .

. integer followed by an aligned non-varying bit string whose length is the
declared maximum length of the string.” The fixed-point value indicates the

current length of the string.

n <~—n bits —»

#here n is the current size of the string and 1 is the maximum size of

the string, Both n and 1 are measured in bits. The address of a varying
bit string is the address of the current length + 1,

2.1.10.

2.1.11

2'1'12.

- 2.1.13

' (Type 522) Varying Character g&ring_

A varying character string is a compound datum consisting of a real

fixed-point integer followed by an aligned non-varying character string

whose length is the declared maximum length of the string., The _

fixed-point value indicates the current length of the strlng - .jhc(u}Q Cenmard

n &n characters —» | i A ""umyjl -

(Type 13) Pointeév

A pointer datum is stored as a 645 double word ITS pair,
017 30 35 36 53 54 €5 66 71

g%%égﬂ its ' 0

where s is the segment number, w is the word offset from the beginning
of the segment, and b is the bit offset from the beginning of the word
addressed by the segment number and word offset. Pointers contalnlng

. the address of unaligned data have a bit offset whose yatwe is 0<b<36.

(Type 14) Offset | Value

|

An offset datum is stored in a single word,
0 17 18 35

when w is a word offset from the beginning of a PL/| area datum. b is the
bit offset within. the'word addressed by the word offset., Offsets '
containing the address of aligned data always have zero bit offsets,
Offsets containing the address of unaligned data have a bit offset whose

Malve ls O<b<36
Value

(Type 15) Label

A Label datum is stored in three Consecutive double words!

pointer to a location in text segment

pointer to a stack frame

unused
The first double word is a pointer to a location in the text segment of
sorme procedure. The second double word is a pointer to the stack frame of

the invocation of 4kzt procedure active at the time the label
value was created. The last double word is unused and reserved for
error check data,

2.1.14.

2.2,

2-2.1.

(Type 16) Entry

An entry datum is stored in three consecutive double words.

pointer toié'procedure entry
pointer to a-stack frame
. unused '

The first double word is a pointer to an entry point in the text segment

of some procedure. If the entry point is an entty to an internal procedure,
the second double word is a pointer to the stack frame of the invocation

of the procedure which immediately contains the internal procedure,

If the entry point is an entry to an external procedure the second

double word contains a null pointer. The last double word is unused .

and reserved for error check data. :

Aggregate Data

The term "Aggregate" refers to PL/| arrays and structures. The following
statements apply to PL/| Aggregates: ‘ _

The amount of storage occupied by an aggregate is the amount of contiguous
storage necessary to contain all of its elements.

The storage boundary on which an aggregate is allocated is the maximum
boundary required by any of its elements.

An Aggregate is said to be "packed" if it contains only unaligned
non-varying bit strings (or packed aggregates of such strings% or if it
contains only unaligned non-varying character strings (or packed aggregates
of such strings).

Level one packed-aggregates are allocated on a word boundary.

The elements of an aggregate are allocated on the boundary that is
natural to that element. The natural boundary for most data is a
word or double word., Packed aggregates and unaligned non-varying
string scalars are allocated on bit or character boundaq{%} Jes .

Arrays

An Array is an n-dimensional, ordered collection of 'scalars or structures,
all of which have identical attributes. The elements of an array are
stored in row major order. (When accessed sequentialy the rightmost
subscript varies most rapidly). . L

-2:2.2. Structures

A structure is a hierarchical collection of scalars, arrays, and structures,
all of which need not have the same attributes.. .The elements of a

structure are stored contiguously in the order of their declaration., If

an element of a structure is an aggregate, all the members of that

aggregate taken together constitute the storage for that element.

2.3. DAFA—FYPE-00RESBSED—hPL T DESCRTPTORS Oln Type Codes Uset 1 PY) Deseighos
- 1 single precision real fixed-point s
2 double precision real fixed-point
3 single precision real floating-point
4 double precision real floating-point
3 pointer data

14 offset data

5 label data

6 entry data
17-20 arrays of types 1-4
* | 29-31 arrays of types 13-15

>

1 514 structure

578 area

579 bit string

520 character string

521 wvarying bit string

522 varying character string’
523 array of structures

524 array of areas

525 array of bit strings

526 array of character strings
527 array of varying bit strings
528 array of varying character strings

data types which are
not Multics standard

-3, THE PL/I CALL AND ARGUMENT PASSING CONVENTIONS

The calling sequence produced byé§;>PL/l compiler is the MULTICS

standard call as*described in BD.7.02 with one minor modification,

BD.7.02 states that the right half of the first word of the argument

list is a O for calls to external procedures and 2 for calls to internal
procedures. P1/l uses the codes 4 and 8 to indicate these sam con tlons.

For the purpose of argument compatibility, it is essential fo

and EPL object programs to know whether or not they are being ¢ L,//
from a PL/| procedure or from an EPL (or EPL-1like) procedure. The use

of the new codes (4 and 8) serve this purpose.

3.1. . Arguments

The argument pointers of the PL/I call point dir to the value of the
argument. All arguments are directly addreséed T:t}§i1ng those which do

not begin on a word boundary. If the datz does not begin on a word boundary
the poxnter refers to the first word which Gontainy the data. The

pointer contains the bit offsel necessary he data. The

format of a PL/! pointer is discussed in Secti . '

3.2,

3.2.1.

Argument Descriptors -

The PL/I implementation of strings and the design of the compiler has

. eliminated the need for argument descriptors except when a parameter

is declared with an * extent or when descriptors are used for some

produce descriptors are:

purpose outside the PL/| language, such as callback or PL/I to EPL

compatibility. The only conditions which will cause the PL/I compiler to

1, Thevparameters of the entry are not described through the use
of an entry(<parameter descriptions>).attribute in the calling

program,

2. An entry(<parameter descriptions>) attribute in the calling
program has one or more parameter descriptions containing an

¥ extent,

Descriptor Formats

The design of descriptoré is an extension of the desi

and is'compatible with it,

Basic Descriptor

. If the argument” ts a temporary

0 15 16 17

18 35

e’
data_type read, write
code

\—\f——"f

size

The size field is defined only for strings and areas,

declared size in bits, characters, or words.
‘used to indicate whether the argument is a read/only or a return argument,
%PL/I dummy) the code will be 1 otherwise

' o
gn given in BS.?.Q?

s

“All arguments (scalars or aggregates) have a basic descriptor of this form,
It represents the
The read/write code is

it will be 2. The dafa type codes of PL/1 are 1listed in Section 2.3,

Array Descriptor

If the data type of the basic descriptor is that of an array the basic
descriptor will be followed by an array descriptor of the following form:

(6]

35

low bound n

high bound 1

multiplier n

r-* " low bound 1

high bound 1

multiplier 1

0

3n-2
3n-1

3n

P

1
o
PR

/0

The bounds are derived directly from the declared bounds of the argument,
The multipliers are-computed from the bounds and the element size.
Multipliers of packed arrays are expressed in bits, multipliers of
non-packed arrays are expressed in words.

Structure Descriptor : .

- A

ptor is that of a strucfure or

If the data type of the basiéig;;ET'
array ‘of structures, the basic' descriptor or array descriptor is followed
by descriptors of each element of the tructure, The relative position of
an element descriptor within ##8 struclure descriptor is the same as the

' relative position of the daﬁ?.ej describes withih the data structure. :
3.3. JThe Format of a PL/I Call ‘\\\\;fﬁré// . ' , : -

’%% | /)
wovd o L_2n / 4 o}' 8

0 or 2n K

pointer to arg 1

pointer to aré 2

pointer toargn ~ | display pointer is optional
display pointer for ‘ and only present if the right
internal procedures half of word 0 is 8.
_° pointer to Desc. 1 Pointers to argument descriptors.
. : These pointers are optional and
* pointer to Desc. 2 only present when the left half
of word 1 is 2n,

pointer to Desc. n

All'argument pointers are PL/| data pointers as described in section 2.1.11.
n is the total number of arguments. ‘

Zn

Lo,

ARGUMENT COMPATABIL ITY BETWEEN PL/1 AND EPL

Because of differences in the way EPL and PL/I object programs pass
string and aggregate arguments, procedur ritten in the two languages
cannot communicate as freely with ms they can with procedures
written in the same language. Thifs, Iscusses the restrictions
which apply to calls between procedyres wri

describes the compatibility feature which is designed to minimize these
restrictions. -

An.entry to a PL/I procedure is sensitive to the kind of &all it

receives. When called by an EPL procedure (or any other non-PL/1
procedure) it maps EPL specifiers and dope into PL/I argument descriptors.
The EPL compiler was .recently modified (July 1969) so that EPL object
programs perform a similar function, When called by a PL/| procedure
containing argument descriptors they map the argument descriptors into
appropriate specifiers and dope vectors, ‘ '

Restrictions on 4%e‘t;pés of Arguments

PL/I - EPL data can be classified into three categories: category |
is data which can be passed between procedures written in different
languages without descriptor/dope vector mapping. Category Il data
is data which can be passed between procedures written in different
languages only with the aid of descriptor/dope vector mapping. Category

ten in different languages and

Il data is data which cannot be passed between procedures written in different

languages. ‘
Category |

1. Arithmetié scalars

2. Scalar pointers

3, Scalar label variables

4. Label constants

5. External entry names -

Category I

1..‘Non—varying scalar strings D
2, One dimensional arrays of any of the previously listed data types.

3. Scalar varying strings. These strings always appear to the called

procedure as non-varying strings whose length is the current length at

the time the call occurred. The must be declared as non-varying in the

called procedure-if declared the calling program they must be varying.

¥A procedure written in either language can not be entered.via a non-
local go to orginating from a procedure written in the other language.

/2

4.2,

4-3;

Category 11

1. Structures

2. Multi-dimensional arrays

3. Areas : :

4. Offset variables A ' -
5. Internal entry names

Notes on ¥fhe Use of iﬂe Compability Egature

EPL calls to PL/I procedures automatically invoke the compatability
feature of PL/I, If any EPL argument contains a'specifier that specifier
is mapped into a correct PL/| argument pointer, If the PL/I procedure
has any parameters whose extents were declared by asterisks, the EPL

dope vector is mapped into a PL/I argument descriptor, Space for these
descriptors is created in the PL/!| program's stack,

PL/I calls to EPL procedures, compiled after July 1969, automatically
invoke the compatability feature of EPL., If the PL/| call contains

no argument descriptors the EPL program is executed Jjust as if it had
been called by an EPL program. If the PL/I call does contain argument
descriptors, those descriptors are examined and mapped into appropriate
EPL specifiers and dope vectors, Space for these dope vectors and
specifiers is created in the Efi)program's stack. :

Note that it is extremely important that PL/I calls to EPL procedures
contain argument descriptors if any of the arguments are category ||

data types. |If all of the arguments are of Category | then the argument . -
descriptors are not necessary. In the latter case, the call will execute
more efficiently if argument descriptors are not present,

A PL/I call will contain>argument desériptors if and only if:

The entry name was declared by default or by the short form of the
entry atiribute, i.e., entry :

A - . . ~

o - CEEN or

The entry name was declared by the long form of the entry attribute and
one or more parameter descriptions contained an asterisk extent, '

i.e., entry(bit(x))

A Detailed Description of the Modifications made to EPL Ob ject Code
to Implement the Compatability Feature - :

The EPL compiler has been modified to allow EPL compiled ‘programs to be
called from programs compiled by PL/I, ‘ :

/T

o~

The save sequence generated by EPL now consists of the instructions:

esvext: ldaq opl0
: cana - 8+4, dl
tze ' .SV »
tsbbp <pll_to_epl>| [pll_to, epl]

.SV oo e
* old save sequence

The sequence starting at .svext is used whenever ‘the EPL "entry might
possibly be called from a PL/I program (all external and internal
procedure entries). The old sequence starting at .sv is used whenever .
the block can never be invoked by a.PL/I program.(begin blocks and bounds
procedures). : o » o

The new sequence checks for the numbers 4 or 8 in the right half of the
first word pointed at by the ap register; these denote, respectively,

a PL/I program without and with the extra stack frame pointer required by
internal procedures, If the special codes are not present, the call is
assumed to be coming from an EPL procedure and the old save sequence is-
used. If either code is present, the call is assumed to come from

a PL/1 program and a jump is made to the special compatibility program
pll_to _epl, i

pll_to_epl performs the following functions:

a) If no descriptors are present, a return is made to bpl0 causing
* ‘the standard sequence at .sv to be executed. Otherwise the following
steps are performed: ‘ : ‘

b) pll_to_epl performs the EPL standard save sequence (tﬁe stack size is
availablé in register X7).

c) The new stack frame is exténded by N words, where N is the
size of: the original argument list rounded up to the next ,
higher multiple of 8, This space is used to create a new EPL -
style argument 1list. '

“d) Each argument descriptor on the PL/I call is examined.
If the corresponding EPL data type requires a specifier and dope, they
are created in space obtained by extending the stack as needed,
If no specifier is required, the data pointer is copied into the
new argument list, '

argument list at the end of the EPL stack frame. (pl_Xo_epl
then returns to the EPL program at location bb 10, u

by-passing the instructions at .sv. a
| g R
v

e) The ap register and stack location 26 are set to zizga)at the new
P
s

5. THE CONVERSION OF EPL PROGRAMS TO PL/| PROGRAMS

This section is designed to assist Multics system programmers to convert

existing EPL programs into PL/| programs. It may also be useful -

to the PL/I programmer who wishes to interface PL/I programs with EPL

programs..- The section is organized around a set of issues each

of which is a source of possible incompatability between EPL and S

PL/I. -Atthe—end-of—this section 15 & quickchecklist-which-maybe-useful .
-;h}1H%gy%mmnﬁarﬂﬂm&—are—converiﬁﬂg—EPt—programs—fU*Pt%%: The reader

is also urged to study section 3 which describes the PL/! call.

5,1, Fixed-point Division

In EPL object programs the division of fixed-point values yielded a

floating-point result. The current version of the PL/I compiler does
noé;i?é%i%éﬁi the divide operator with fixed-point operands. The
(///’65'pi SF Tssues a diagnostic which describes how to accomplish fixed-point

division using the divide built-in function.

' fp{//ﬂ‘lﬁ/ roe vef‘:ii i

ass
k=divide(i,j,17,0);

where: 17 is the desired precision of the quotient and may be any
integer constant between 2 and 35. The fourth argument must always
be a zero, .

5,2, TIhe hength %ui1t~in ;%nction

EPL programs which contain calls to the library routines lg¥cs or

1g$bs should be rewritten to use the length built-in function. The

length built-in function always returns the current size of varying strings

and the declared size of non-varying strings. The function is extremely

officient since-it is usually compiled as a single 1da instruction.

PL/| does not implement any function which returns the maximum length of a
. varying string. -

5.3, Bitlatring to Qri’chmetic@onversion el ‘

Theéi?ﬁl precision rule governing the onversion of bit strings to
fixed<point values is different fro the EPL rule. This difference
between the two languages does not(effect most programs because
the usual practice has been to perform the conversion through the use of
s fixed built-in function. EPL programs which depend on the default bit
string to arithmetic conversion rule should be modified. '

504-

PL/! rule: bit_strings are converted to a fixed-point binary value of
precision 71,

EPL rule: bit_strings are converted to a fixed-point binary value of
precision 63, except when the length of the string is a
constant whose value is less than 3%&; in that case the resultant
precision is the length of the stripg. '

given: 67?;
dcl b‘bit(TO), a fixed bin (17);]

a= a#b;
Rewrite as:
: a = a+fixed(b,10);

Use of f%e Returns Attribute

The EPchdmpiler allowed the attributes of the return value of a

- function to be written anywhere within the declaration of the.function,

¢
¢

e

The PL/! compiler requires that these attributes be written in the returns
attribute., The EPL compiler will accept the returns attribute as well
as the more permissive form, '

given: | yo §/M |

dcl e entry bit(1);

Bewrite as: v////fﬂn
dcl e entry returns¥(bit(1));

The §ignificance of 4he Entry Jttribute

The entry attribute may be written in either a short or long form,
i.e., entry or entry(<Parameter descriptions>). The EPL compiler
accepted both forms but processed the long form exactly like the short
form. The PL/| compiler makes extensive use of “the long form and it .
is essential that the PL/I| programmer understand its meaning.

The entry attribute has the following two uses in Multics PE/I:

If the attributes of the actual argument used in a call to this
entry differ from the declared attributes of the corresponding
parameter, a conversion will be done in order to force the
argument to conform to the attributes specified in-the parameter
description, .

/&

The careless use of this feature will result in unexpected
conversions and a call by value instead of a call by reference.
In other words the argument will be converted to a temporary
whose attributes agree with the parameter description and

~ the temporary will be passed as the argument,

g\g\ng If the short form of the entry attribute is"used, or if any
extents of any parameter descriptions are specified by an *
then all calls to the entry will contain argument descriptors.
The presence or absence of argument descriptors does not need
to concern the casual PL/I programmer, but it is of great importance
for programmers who must interface with EPL programs or who :
are concerned about the efficiency of calls. The discussion
~of the Pt/ call in section 3 provides a more detailed
discussion of the use of argument descriptors.

Rules governing the conversion of argumenis to user declared

entry names:

a)- Ari{hmetic scalars arguments are considered to match a
- parameter description only if all of the following
attributes agree: _ o

fixed
" float
binary
@decimal
precision
scale

b) String scalar arguments are considered to match a parameter
description only if all of the following attributes agree:

bit
char
varying
aligned
" unaligned
declared length’,

e

The declared lengths are considered equal only if:

the length declared in the parameter
description was an asterisk. ‘

@ A bug in the current compiler causes binary §%d decimal to be considered
equivalent, This will be corrected in a later version of the compiler.

————

c)

d)

e)

f)

g)

h)

\)\c}’)
() \Q\QSl \«g

both the parameter description length
and the argument length are declared
as decimal integer constants of equal
value. .

Scalar locator arguments are considered to match a parameter

‘description only if the following attributes agree:

pointer
offset

The area reference of the offset attribute is ignored

for purposes of attribute matching. No conversions are
performed on locator data. If the attributes do not match,
the compiler will issue a diagnostic.

If the parameter description has been declared with the
label attribute, the corresponding argument must be a
label constant or scalar label variable. A mismatch
will result in a compiler diagnostic, ’

If the parameter description has been declared with the
area atiribute, the corresponding argument must be a
scalar area variable whose size matches the size of the
parameter description. The rules for previously given
string length matching apply to area sizes. The compiler
issues a diagnostic if the attrlbute or size does not
match,

If the parameter description has been declared with an entry
attribute, the argument must be an entry name without
arguments or enclosing parentheses.

If the: parameter description describes a structure, the
argument must be a structure whose component elements
all match their corresponding elements of the parameter
description, The compiler xssues a diagnostic if any
items do not match.

If the parameter description describes an array, the
argument must be an array of identical bounds and
dimensionality and whose elements match the elements of -
the parameter array according to the rules

given for scalars and structures. The rules previously
given for string length matching also apply to array

‘bounds, A compiler issues a diagnostic if any.items do not

match,

za

’ 5.6.‘ Label Arrays as Transfer Vectors

The EPL compiler compiled declarations of the form
dcl s(5) label initial(a,b,c,d,e);

into a transfer vector, While this provided an efficient method of
implementing a switch it was not legal PL/Il. The PL/1 compiler has '

no construct equivalent to the EPL transfer vector. It will compile the de-
declaration of s into an automatic label array and will initialize

it during the prologue. ' Transfers to elements of s will invoke the PL/I
unwinder, This situation can be improved two ways:

1. All label variables which only contain local label values
should be declared label(x) where x is any label
constant in the block of declaration, Transfers to
such labels will result in a direct transfer instead of
an unwinder call,

2. To avoid initialization of a label array during the

. exécution of the prologue, remove the initial attribute and
declare the label array to be static, The array must
be initialized by explicit code, but that code can
easily be written so that it is done once per-process.

given: dcl 1(3) label initial(a,b,c); (jIJ
rewrite as:

del 1(3) label(a) static, : \ﬂ)@ - :L/
1_swt fixed static initial(0);
If 1_swt = 0 then
do;
1_swt

. ‘ | ' z af \«;ﬁ e :
\R@. _ | %83:2 M

end;

S

If written as:

dcl 1(3) label(a) initia;(a,b,c);

1 be initialized at each invocation of the
transfers of the form go to 1(i) will

The array w
procedure, bu\
by-pass the unVinder.

5.7. The Use of cv-string and char’ (¥) Qeclarations

The lack of proper diagnostics in the EPL compiler resulted in the
CComilationjof several illegal language constructs. Among these were
Y declarations of non-parameter bit or character string variables whose
/" length was declared as an asterisk.

(%u4§:!u\{f5&)

Jg

The procedure cv-string was written to use the results of the cdmpilation
of such strings. The procedure has a number of uses most of which can be -

replaced by an appropriate use of the substr built-in function., -The buX
substr built-in function is not only correct PL/I(it is also generally
more efficient than cv-string, A - '

| &N

The char (%) feature was also used by the program éémméndj%é}.
It is suggested that fetch_arg_ replace all uses of command_arg.

5.8, Siﬁple Qules for égnverting EPL Array or Structure‘;gclafatigig:>

to Equivalent PL/I Heclarations ’

If a PL/| data declaration is expected to describe exactly the
same arrangement of values in storage as an identical EPL

data declaration, then the following three rules can be used
to insure the desired compatability:

1. Level one arrays of non-varying étrings must be declared
with the aligned attribute,

»

‘5k . A structure containing elements of dis§jmil'ar '
/A)CDFE .) types of which one or more are non=vapying stripgs must —
XV be declared with the aligned attribu é. This describes
/1ﬁU1 . any EPL structure which is not packed and whji€h’contains one
V A or more non-varying strings.) '

3. Because PL/| varying‘strings do not have the same storage
representation as EPL varying strings, remove all varying
string declarations.

It-is necessary to follow these rules when ever the same data
is accessed by both an EPL and a PL/I procedure. This tircum-
stance occurs when: - ‘

1. The declaration is a include file incorporated into
... both an EPL and a PL/I program,. '
2..&The‘déciaration describes external static data accessed
‘ : by both EPL and PL/I procedures.

3. The declaration describes an érgument/parameter passed

between EPL and PL/I,

4. The declaration describes a portion of based storage
whose address is accessable to both an EPL and a

PL/! procedure.

Note that the EPL compiler will accept the aligned
and unaligned attributes bul will ignore them.

0"

A\

5.9,

5.9.1. Yerinitions:

5.9.2.

g et

The M@of the Alignment Attributes on S’torage Allocatlon and

on the Packing of Arrays and Structures,

jnsure compatabilify between
ould read Section 5.8,

-

Readers who want a simple set of rules whif
EPL and PL/| structure or Array declaratig

-

The attrlbute "alxgned" means that the varlable tp which 1t applles is
allocated on a word boundary.

The Attribute "unallgned" means that the variable to which it applies
is not necessarily allocated on a word boundary.

The term "packed" is not a source language attribute in PL/! but is
used to describe a property of EPL or PL%I arrays and structures.

A PL/I or EPL structure is packed if it contains only unaligned non-
varying bit strings (or packed sub-structures of such strings), or if
it contains only unaligned non-varying character strings (or packed
sub- structures of such strings).

A PL/I Array is packed if its elements consist of packed stru;tures or
unaligned non-varying strings,

An EPL Array is packed only if it is a member of a packed structure.

To review briefly - aligned and unaligned describe .the storage boundary
on which a variable is allocated, and packed describes a particular
‘type of array or structure. It is thus possible for a structure or

- array to be both packed and aligned-meaning that it is allocated on a
word boundary but is packed according to the previous definition,

The é&oragegﬁllocation @ules of the PL/I Coméiler:

A1l level one varlables are allocated storage beglnnlng on a word
boundary or a mulilple of ‘a word boundary. :

‘ Now~

- Aligned variables and all non- strlng orVstructure varlables are allocated
storage beginning on a word boundary or a multip

lg)of a word boundary.
Unaligned strings or unallgned packed aggrega eé; e allocated storage
on the nearest bit or character boundary

=2/

. /51332” The Effect of the Alignment Attributes on the Accessing of 6;sed.Variables

and Parameters
% There are “two situations in the PL/I language which 'pe?imi’c data allocated

. on arbitrary bit boundaries to be accessed through the use of another
: L57 _ declaration: A reference to a parameter, and a reference to a based
é;‘ /.pyﬁériable hose address was derived by the addr function. In both

instances Ja level one variable can be used to des¢ribe data residing

- g ézf:¢ﬁran arbitrary bit address. . .
ThE/EL I language requires that the alignment attributes of arguments and

yafameters agree. It imposes the same requirement on the based declaration and
“he item it represents (the item whose address was derived via the
addr function). '

The requirement that the alignment attributes agree in these cases
permits the PL/I compiler to generate more efficient accessing code’
for referenced to based variables or parameters. '

It is absolutely necessary that the Multics PL/| Programmers insure that
the Aligonment Attributes of Arguments/Parameters and based Variables/
Arguments of addr _sgree. The following discussion of the Multics PL/ I
pointer should make the reason for the requirement clear.

“he Multics PL/| pointer consists of a machine address (segment number and
word offset) and a bit offset within the word selected by the machine
address., Accessing code used to reference aligned parameters or based—=
variables ignores the bit offset since the data is known to be allécated
on a word boundary. Accessing code used to reference unaligned/parameters
or based variables uses the full pointer including the bit e . BITSeT,
If . an attempt is made to reference an unaligned variable through the use
of an aligned declaration the bit offset will be ignored and the a
will be incorrect,

6.1.

6.2-

6.3..

Tips mﬂbﬁﬁting gfficient PL/! Programs

This section is designed to help Multics PL/! programmers write efficient
programs. The discussion is organized around a set of specific issues
each of which is a potential cause of poor object code. All statements
about the nature of the object code refer to the object code produced

by the Multics PL/! compiler and may not be valid for .some other
implementation of the PL/| language.

General Comments "'Q
P

U.A\ -
ay of wr/ 1 g a PL/I Program is the most
efficient, For example, iY,a ya&ﬂ% s in fact a bit string, it should by
declared as a bit string. a varyfng character string is the most
convenient representation for a velv@ then it should be declared as

Usually the most natural

~a varying character string. Slmllarly the choice between using a

structure or an array should be make on the basis of which construct
seems most "natural™ to the problem., Do statements should be employed
wherever they are convenient; the "do;" form is particularly nice
since it generates no code.

The Use of Entry Declarations

procedure should be explicitly declared
calling procedure., If the called procedure
is a PL/I procedure o yan subprogram the entry declaration should
completely describe all pafameters of the entry. The attributes used

in the entry declaration must agree exactly with the attributes declared
for the actual parameter in the called procedure,- The use of complete
entry declarations results in more efficient calls to the entry.

A1l entries called by a
by declare statements

If the called procedure is an EPL procedure and one or more-of its

parameters is a string or an aggregate then the entry declaration in the calljing

procedure must not contain a description of the parameters.

///}%/A\)

Refer to seqtion 3 for a discussion of the PL/I call and argument passing conventions,

Parameters

Asterisk extents should not be used unless they are really necessary

because they force all calls to the procedure to contain agrument descriptors

and calls with argument descriptors are twice as long as calls without
argument descrxptors

Accessing a parameter is equivalent to a simple pointer qualified reference
of the form p->X. So generally nothing is gained by copying a parameter
into a working variable. However, if the parameter is an unaligned

string it is definitely more efficient to copy the string into an

aligned working string variable. Strlng,parameters should be declared
"alipned" if and only if they never receive an "unaligned" arpument.

-

6.4.

6-5:

6.6.
6.6.1.

6.6.2,

6.6.3.

Begin Blocks

Begin blocks are implemented as internal procedures and } /{//
-

~carry the full cost of the recursive call mechanism.. Unless the use

wishes to define a new set of internal variables a do; . . . end;
construct can be used in place of a begin block. The-call created

to invoke a begin block is slightly more efficient than the call to
an internal procedure, so begin blocks may be used instead of internal
procedures where possible,

Internal Procedures C)&;}¥?L)

The call used to invoke an inteynal proceduré'is‘nearly equivalent to

the call used to invoke externdl procedures. Because the internal .
procedure is able to acce ariables belonging to its containing procedures
the internal procedure § requires fewer arguments than an equivalent
external procedure. It also shares its constants with the containing
procedures. For these reasons internal procedures are usually more

eff1c1ent than an equivalent external procedure.

Accessxng Code

The <éf‘f‘ecv‘. of ﬁlock {;»tructure on A:cesging

A reference to an automatic or pcrameter variable declared in a block other
than the block making the reference is called a non-local reference.

These references are equivalent to a reference of the form:

p1"gp2—>p3 . 8 pn"'>x
where n is the number of blocks between the reference and the declaration.

References to static or based variables declared in an outer block are
Just as efficient as references occuring within the block of declaration,

Static Storage Réferences.

A reference to an internal static variable is equivalent to p->x.

" References to external statlc variables are equivalent to p->x on all

references except the first. First references to external static variables
cause a linkage fault, : '

References to %bsed Storage

Simple based references of the form p->x usually result in an indirect
address type of reference. References which use multiple pointer operators,

6.6.4.

(i.e.p->g->r->x) result in the use of as many base register load instructions '
. are there are pointers in the reference. References to based aligned '

string variables are much more efficient than references to based
unaligned string variables. A _based string variable should be declared
"aligned" if and only 1? it is never used to describe an "unaligned"

string.) . _ ,
The gesign ofl A?ﬁﬁfgates agd. Their Effect on Accessing Code

Flements of arxays or _sfructures have what is known as an‘offset. The
offset of an element is the distance of the elemerit from the beginning

of its level one containing aggregate. An items offset is either expressed
in words or in bits depending on the nature of the elements

which preceed it. The offset of an "aligred" ‘item is.always expressed in
words, The offset of an "unaligned" item is expressed in bits and words

if it is immediately preceeded by a string variable or packed aggregate.
The design of structures and arrays should be influenced by the following:

1. Constant word offsets result in the best accessing code.
2. Constant offsets are more efficient than variable offsets,
3. Word offsets are better than bit offsets.

4. A variable offset developed from items whose sizes are expressed
in the same terms is more efficient than a variable offset
developed from items whose sizes are expressed in different
terms.

An example of the fourth point is given below,

Example:

decl 1 s,

2 a(n) float,
2 b(m) char(k) unaligned,
2 ¢ area(J),
2 d bit(kk),
2 x ptr;
dcl 1 ss, _
2 a(n) float,
2 p(m) ptr
2 ¢ area(ds,
- 2 x ptr;

References to ss.x are more efficient than references to s.x because all
the items which preceed ss.x are items whose size is expressed in words
or multiples of words.

o4

6.7.

. The offset of a string variable is the distance between the

string and its level one containing aggregate, or it

may be the distance between a sub-string described by a "substr"
built-in function and the beginning of the string, or it may be the
distance between the beginning of a string array and some element of

that array. A string's offset may also be a comblnatlon of any of these
three offsets.

P

»

The Efficient Use oF String Data

The efficiency of PL/1 Strxng Operations depends-on the oFFset and
length of the strings used in the operation, Offsets are discussed
in section 6,6, 4. :

‘The length of a string is declared by the programmer, Varying strings.
have two lengths: the declared length determines the amount of storage
allocated for the string and represents the maximum size of the string.
The current length is not declared by the programmer but is initially
set to zero by the compiler or by compiled code, Each assignment to a
varying string updates the value of the current length., In this
discussion a. vary1n% string should be considered to

be just as-efficient as a variable length non-varying string. The
following general guidelines should be considered when u51ng stfing
variables:

1. Operations on constant length non-varying strings whose
length is less than or equal to 72 bits or 8 characters
‘are performed by in-line code and are more efficient

than other string operations, LOJ{(

2, Operations on variable length non- -varying strln%
varying strings and constant length non-varying strlngQ
are all equally efficient,

3. The nature of the string offset is generally more significant
" than the nature of the length or the difference between

vafying’ and non-varying. UpﬁN%“QJz yxanPNﬁ“i

4. Operations on unaligned non-varying parameters oVbased
strings produce the worst accessing code,

The accessing of string variables is improved greatly if the variables
are declared "aligned" this is particularly true of parameter and based
string variables, However, if a parameter or based string variable
serves as the image of an "unaligned" string the parameter or based
string must be "unaligned", :

‘-»6:80 '

6.9.

Label Variables

Multics PL/I implements Label Variables whose value is known to be restricted
to a set of label constants all of which are labels of statements
within the same block much more efficiently than it does label variables

whose valves are unrestricted,

Example:‘
dcl lab label(a,b,c);

~del 1b label;

Where: a,b and e are Labels of statements within the block containing
this declaration, g

Transfers to label lab which occur in the block of declaration do not
invdice the PL/| unwinder and are nearly as efficient as transfers to

a 81 constant. Transfers to 1b invoke the unwinder and are costly,

Use of fhe Initia) Attribute

The initial attribute is implemented for all storage classes. Internal
static variables are initialized by the compiler and generate no code

in the object program. External static variables whose names do not
contain a dollar sign are initialized on the occurance of the first
reference within the process, The-initialization is done by copying’

a pre-initialized image from internal static storage into the external
static variable. This implementation is reasonably quick but the space
used to contain the image may be quite large in the case of large
initialized arrays or structures. Note that static label variables cannot
be initialized. o : ' '

Based and automatic variables are initialized when they are allocated.
The initialization is done by means of assignment statements similar

to those written by the programmer. Array 1hitializatio?§can often be

more efficiently.done by .the programmer using multiple as ignment dq.~ﬁtf}

tat ts, : ' v
statements | O#\ ‘%bﬁ/‘zé VN

fow
Multiple Assignment Statements R

Multiple assignment statements whose left side elements have identical
attributes are very efficient and should be used where possible.
Multiple assignment statements whose left side elements have different
attributes are no worse than separate assignment and in many cases are
slightly better than separate assignmentis. ' :

27

7.

7l1l

7.2,

7.3.

~ Example:

i,J:k’l = 03

Generates: ‘
l1da zero
sta ' i
sta ;
sta k
sta 1

'The lmplementation of PL/I Storage Classes

The storage mechanism used to contain the valies of PL/I variables
depends on the declared storage class of the variable:

Automalic Stbragei

Variables whose storage class is automatic are allocated upon entry to the
block in which they are declared., The space used by automatic variables
is provided by the stack associated with the current process. Upon

block entry this stack is extended by an amount sufficient to contain

all automatic variables declared in the block; upon return from the

block the stack is reverted or popped releasing the storage occupied

by the automatic variables. All compiler produced temporaries are

also allocated in the stack. String temporaries whose size exceeds

two words are allocated just before the execution of the statement in
which they are used, and are released upon completion of that statement,

Internal Static

Internal static variables are assigned locations in the procedure's

1inkage section by the compiler. Any initial values are established by

the compiler at the time the space is assigned, When the procedure is
first invoked the linkage section is copied into the combined 1linkage
segment associated with the current process. This action has the effect of
allocating and initializing all internal static variables declared

in the procedure. Subsequent invocations of the procedure in the same
process do not re-initialize internal static storage.

Exiernal Static

External static variables whose names do not contain a dollar sign are
allocated and initialized by the procedure which first references

them. Space for these variables is created at the time of their
sllocation in a segment named stat_§stat_. This segment is created

in the users process directory when it is first needed and remains there
until the process dies. The "rename" option may be specified on a

28

7-4.

‘procedure statement and may be used to change the name of the

segment used for the allocation of external static variables. Refer

to the Multics PL/I language Specxflcatlon. External static variables
whose names contain a dollar 51gn are assumed to be previously allocated
in a segment found in the user's current working directory., A variable
named :

-

adb o .

is assumed to be located in segment a at an offset named b, A variable
named : '

ad

is assumed to be located at the beginning of "a segment named a.
Initial attributes specified for these type of external varlables are
ignored.

Based Storage

Based variables are allocated storage and initialized by the execution

of an allocate statement, The storage used to contain the value of

a based varialile is released by the execution of a free statement.

If an area variable is specified in an allocate statement, storage

for the based variable is'allocated in the area variable. If no

area variable is given in the allocate statement, a system supplied

area named free $free_ is used. free_$free_ ia an area variable 64K

words in size which occupies an entire segment. The first use of the
area causes the segment to be created in . the user's process

“directory. It remains there throughout the 1ife of the process.

Unless variables are explicitly freed by the execution of a free statement
the free_§free_ segment will continue to fill up with based variables
throughout the life of the process.

Three run time support rout1nes are used by the PL/I object code

to manage space within area variables, All areas except free_$free_

are automatically initialized to the empty state. The initialization is
done at compile time if the area is located in internal static storage;
otherwise it is done by the M"empty" built-in functon. The empty built-

* in function invokes the "area_" run time routine, The execution

of an allocate statement invokes the "alloc_" rin time routine, and
the execution of a free statement invokes the "freen_" run tlme routine,
Reference BP.4,.02,

29

g.1.

8.2.

The Fundamentals of Multics for PL/I Programmers

This section provides the user with a brief and simplified description

of several fundamental characteristics of Multics. Terms such as process
and working directory which are used elsewhere in this document are defined
here. Experienced Multics users may skip this section,

Seoments and Directories

The address space in which an obJect program execlites is organized as a

set of segments each of which is a linear address’ space 64K words long.

Each segment is identified by a name and belongs to a directory., A

directory is a list of segment names and other segment attributes. It

is itself a segment and belongs to another directory. A segment or directory
belongs to only one directory - resulting in a well defined tree structure

of segments and directories as shown below:

Example:

d

N

'1d

RN S’ /1\\{

Each segment labeled s is a 64K address space identified by a unique
name within its directory. Each segment labeled d is a directory
containing the names and attributes of its member segments.

Directory segments are named members of a dlrector%(ﬁ t like any other
segment. —

The name of a segment need only be unique to its directory - two
segments may have the same name if and only if they belong to different

directories.

A Process

For our purposes 2 process can be considered to be an execution activity
which begine when a user logs in and continues until he logs out, or

8.3.

8.4,

8.5.

-

until he explicitly tefminates the/ process by starting another process
through the use of the| "new-proc"/command. A Multics process corresponds
to a "task" in certain

Dynamic Linking

Feferences to any portion of the address space consist of a segment name
end a.location within the segment, . In order to increase the efficiency
of a storage reference a segment name becomes associated with a segment

" rumber when the segment name is first referenced within a process.

P segment number is merely an alias for the segmemt name, but it is more
easily translated into a storage address by the system. The association
between a segment, its name and its number is retained throughout the life
of the precess. o

If program a references program b by means-of a call or function reference
e link is established between a and b such that all subsequent references
1o b by 2 will be accomplished by using the segment number of b instead of
the name b. A similar link is established if program a references data
contained in segment c. The establishment of these links during the
execution of the program is called dynamic linking.

The Search Mechanism

m considers one directory to be the current working
The user designates the current working directory through the
"change_wdif" command. trritectd

At 211 times
directory,
use of th

Vhen a segment name is referenced during the execution of a program the
operating system performs a search algorithm which identifies the segment
and associates a segment number with the segment name, The search mechanism
first determines if the name has been referenced during this process; if it
has, the segment.which.was orginally referenced is used, otherwise, the
viorking directory+is searched for a segment whose name is that used in

the reference. If no such segment is found the search continues in one

" or more system directories which contain library procedures and portions of the

operating system. When a segment is found it is.given a unique segment number
and a link is established between the segment containing the reference
and the referenced segment.

“he Hidden Dangers_of Dynamic Linking

The user who is unaware of the fundamental workings of the dynamic linking
mechanism may experience unexpected difficulties when he attempts .
to execute programs in Multics. Most problems are caused by the fact that
the system maintains the association between a segment name and its segment
number throughout the life of the process., For example if a usger executes
program a which calls a library procedure X, and the ussr then changes

to a new working directory, executes program b which calls a procedure

X located in his new working directory, the system will establish a link

S/

8.6.

All system segment names should end with undersco

working diregtories in the middle of a process.

to the original library segment because the name X is still associated

with the orginal segment and segment number. A more frequently encountered

problem odcurd during program de-bugging: Suppose that the user compiles

a progra Z 5Ad executes it by calling it from the console or from another -

program, “H€ discovers an error and re-compiles the program, If_he
then calls the program as he did the first time he will not new
version but will instead get the old version because the namg¢ Z-jé still

associated with the orginal segment and segment number.

Since the operating system itself consists of eepstate named segments

it is also possible for the user to inadvertently link to-an operating
system segment rather than to his own segment, This problem can be avoided
by using segment names which do not end with an underscore character "_".

voided by not switching
] second problem
can best b2 aVoided by using distinct names for each version of a program,

The first problem we discussed could have been

The new_prog" command can be used to erase all previous associations
between. segfient names and segment numbers., - 1t is somewhat time consuming
because -an entirely new set of associations must be built up during
the execution of the new process, but it often is the only way out of

s complicated situation. ’ o

A Process and'{;e %xecution of a PL/I! Program

. The Multics Process has a number of interesting sidé effects which are of
‘concern to the PL/I programmer. '

1, Static variables declared with initial attributes are initialized
once per process. Subsequent executions of a procedure within the
same process do not cause initialization to occur.

2. External. variables are allocated and initialized once per process.
Similarly external file names and condition names are established
for the life of the process. (The external name X cannot be used
for more than one purpose within a process).

3. Based variables allocated in the defauft area free_$free_ remain
allocated in that area throughout the life of the process, unless

ZXDO.\(C\'H(} \CM (46 Yoo ©Oxecultond :O‘7L</\
tee Sfulewenrt. |

’A)[ww@()\

X

(S

o b

‘\UUQJ‘/YMA

ot Buadail

