SALTZER

TO: DISTRIBUTION cT :
' FJ Corbatbd
FROM: R. A. FREIBURGHOUSE RC Daley
4 JW Gintell
SUBJECT: VERSION II OF THE PL/I COMPILER JM Grochow
: ’ : JH Saltzers
DATE: AUGUST 21,.1970 TH VanVleck
. BL. Wolman

The PL/I Compiler rebuilding project has progressed to the point
where we now must define those language changes and features which
the new compiler (Version IT) will support.

The principal design objective of the Version II compiler is to reduce
the resource requirements of the compiler while continuing to support
the full PL/I language and continuing to generate the same quality
object code, It is too early to predict the performance of Version II
but it is expected to be significantly faster than the current compiler.

While rebuilding the compiler we expect to eliminate as meny implementa-
tion restrictions as possible. Several improved error messages will
be produced and somewhat better object code will be generated. The
two most significant object code improvements will be:

1. Subscripted label constants will become elements of a transfer
vector.

2. In many cases, internal procedures and begin blocks will share
their parents stack frame and will use a fast call, save, and
return.

Nearly all source programs compilable by the current compiler
will be compiled properly by Version II. However, those features
of the current language which are not included in the ANSI standard
will receive warning diagnostics.) '

We feel that the advantages of coding in a standard language outweigh
the disadvantages of having to make a few winor syntactic changes to
get rid of warning diagnostics.

The source language compiled by Version II is & subset of the proposed
ECMA/ANSI standard PL/I. This language is a cleaner and more powerful
" language than our current PL/I. In nearly all cases the changes have
been favorable from the Multics user and system programmers point of
view. The remainder of this document describes in some detail the new
features of the Version II compiler language.

Extensions to the current language:

1.

2.

Entry variables will be supported as a general data type.
They may be dimensioned, members of structures, belong to any
storage class, etc.

Functions will be able to return any scalar data type except area.
Future versions of the compiler will support aggregate valued
functions as part of an extension which will include aggregate
expressions and assignment., :

Functions may return string values whose length is determined by
the function end not by its caller. Returns (char(*)) :

Based varying strings will be allowed.

>

Null argument lists are allowed in: function references, call
statements, procedure statements, entry statements, return
attributes and entry attributes. - : : o

The arithmetic will be extended to include: complex, scaled fixed-
point, true decimal fixed-point, and all associated built-in
functions.

The list of built-in functions will be extended to include:
clock, translate, and verify. Several unimplemented functions
will be iwmplemented,

A new procedure option () which allows programmers to optimize
calls will be availsgble. It has the following effect on all calls
made by the procedure.

a. Constant arguments are not copied into temporary. storage.

b. Aligned level one scalar arguments are considered to mstch
uneligned scalar parameters.

Features of ANSI PL/I not supported by Version II:

*¥), Aggregate expressions and array cross sections.
*¥2, Tasking

3. Controlled~storag¢,

4, The like, picture, and generic attributes

5. Area assignment

6. True decimal floating-point

»
-~

¥This feature is being extensively redefined by ECMA/ANSI standardization
groups. : h

Changes to the current language:

1. Labels on Declare statements are recognized as labels and
effectively become labels of & null statement which replaces the
declare statement in the object program. Version I ignores
labels on Declare statements.

2. The syntax of a label is restricted to <1dent1f1er>[(<dec1mal-1nteger>)}
All lgbels are constants and refer to statements in the current
invocation of a block. Subscripted labels are compiled into a
transfer vector and thus provide a very efficient implementation
of a switch., Version I allowed sutomatic label variables to appear
as labels - a feature which provided a rather inefficient switch.

The new syntax is a subset of the ANSI standard - the old form is
no longer standard and is not allowed by Version II.

3} The declaration of an entry constant is restricted to the form:

b

del <1dent1f1er> entry ([<parameter-desc>])
[returns ([(returns-desc>])]
[reducible| irreducible] [external]

This syntax is the proposed ANSI standard and has the following
implications:

The only entry constants (entry names) declared in a procedure are
those entry names which are external names of other procedures.

A procedure statement or entry statement is considered a

declaration of the attached label as an entry name with an entry -
) and returns() attribute. In other words the compiler

examines the text of a procedure and builds a declaration for each

of its entries and each of its contained internal procedures.

This eliminates much redundant declarative information now required

from the programmer and lessens the possibility for mistakes.

A1l undeclared names used with an argument list or in a call
statement are considered built-in nemes, If the name is one of

the built-in functions recognized by this compiler the built-in
function will be invoked. Otherwise a Multics call with

descripters will be made and the mame will be declared as a built-in
external entry. Note that standard PL/I would consider this last
case &n error. We allow it because of non-standard system
procedures like ioa which cannot legally be declared in standard
PL/I. Effectively the set of built-in functions includes everything
in the system reachable by the search rule.

(Continued)

Built-in functions are no longer declared by default unless they
have an argument list. Thus the argumentless built-ins like
null, clock, time, date, onchar, and onsource must be explicitly
declared built-in.

These changes to the standard language were made to:

1. Reduce the number‘of source program errors resulting from
undeclared entry names. (Argument parameter mis-matches, etc.).

2. To allow the list of built-in functions to be extended by -each
implementation, and to allow implementation defined built-in
or system supplied subroutines.

3. To clean-up the current rules regarding contextual declarations - -
of entry and built-in names. N

The ANSI standard has been modified so that it now agrees with our
implementation of string temporaries.

You will recall that in our implementation a string expression is
neither varying nor non-varying, it is merely a string value.

The attribute varying only applies to variable and is used to
effect assignment to the variable.

This means that string expressions can be passed as arguments to
either a varying or a non-varying string paremeter.

In order to insure complete compatability with the standard
programs which contain a returns attribute of the form returns
(varying char()) must be changed to returns (char(*)).

The Version IT compiler will compile the old syntax and issue a
warning diagnostic.

The slignment asttribute of all scalar values must match the
alignment attribute of the parameter to which they are passed.
Version I only required the match for string scalars.

This was an error in Version I and is being corrected to conform
with the standard. An optimizing option can be used to cause
aligned items to match unaligned items.

The Version I compiler has been issuing a warning diagnostic

when the return attributes were not enclosed in the returns ()
attribute of a procedure or entry statement.. The Version II
compiler will issue a fatal syntax error for this case,

The attributes: normal, abnormal, uses, sets, secondary, are no
longer allowed. They were ignored by Version I.

