N Aul

R. Freiburghouse
October 21, 1970

The Internal Representation of PL/1 Programs

Introduction

This document describes the internal format of a PL/1 program during
compilation. Although some fields and values are not developed until
the completion of declaration processing or semantic translation, the
description is generally valid for the entire compilation.

This description is a complete definition of the input 1o the code
generator and may be used by other Multics compiler writers who wish
to use the code generator or by projects who wish to build code
generators for other machines or environments.

This document is designed for use as reference material by compiler
writers and maintenence personnel. The readsr is assumed to completely
understand the PL/1 language and should have read "The Multics PL/1
Compiler" by R. Freiburghouse published in the proceedings of the 1969
FJCC.

Contents Page Number
1. An Overview 4
2. The Block Structure 5
3. The Representation of Declarations 7
3.1 The Token Table : 7
3.2 The Symbol Table 8
3.2.1 Label Nodes g
3.2.2 Symbol Nodes 9
3.2.3 Array Nodes Q 14
3.2.4 The Initial Attribute . 16
3.2.5 Storage Classes 17
3.2.5.1 Automatic 17
3.2.5.2 Based 17
3.2.5.3 Static 17
3.2.5.4 Controlled ‘18
3.2.5.5 Defined ‘ 18
3.2.5.6 Parameter 18
3.2.5.7 Parameter-Descriptor : 19
3.2.5.8 Constants 19
3.2.5.9 Temporary Values 20
4. The Representation of Execgtable Statements 20
4.1 Statement Nodes _ 21
4.2. Reference Nodes 22
4.3 List Nodes 24

4.4 Operator Nodes ' v 24

4.5 The Operators

A

4o
b

4
4
4

4
4
4

5.1
5.2
5.3
5.4
5.5
5.6
5.7
.5.8

5.9

Arithmetic Operators

String Operators

Assignmént Operators
Relational Operators
Transfer Operators

Call, Save, Return Operators
Offset Operators

Built-in Function Operators

Input/Output Operators

25
25
26
26
27
28
28
30
31
32

1. An Overview

The internal representation of the
face between phases of the compiler.

represent the component parts of the
operators, operands,

program, such as blocks,
and declarations.

program being compiled serves as the inter-
The internal representation is organized
into a modified tree structure (the program tree)

consisting of nodes which
statements,
Each node may be logically connected

to any number of other nodes by the use of pointers.

Each source program block is represented

which has two lists connected to jt:

The elements of the declaration 1ist a

in the program tree by a block node

a statement list and a declaration list.
re symbol table nodes representin

declarations of identifiers within that block. The elements of the statement

list are nodes representing the source statements of that block.

EFach state-

ment node contains the root of a computation tree which represents the opera-

tions to be performed by that statement.

operalor nodes and reference nodes.

This computation tree consists of

The operators of the internal representation are n-operand operators whose

meaning closely parallels that of the PL/1 source operators.
1s changed by certain phases,
declaration of some variable or constant.
root of a computation tree which describes

reference

the item at run time.

This internal representation is machine independent in that

The form of a
but references generally refer to a
Each reference also serves as the
the computations necessary to locate

it does not reflect

the instruction set, the addressing properties, or the register arrangsment of

the GE64S5.

The first four phases of the compiler are also machine independent
cince they deal only with this machine independent

internal representations

Figure 1 shows the internal representation of a simple program.

FACT: PROC;

DCL I FIXED,PRINT ENTRY, F ENTRY RETURNS (FIXED) INT;
DOl =1 7O 10; .
CALL PRINT{"Factorial is F(I))
END;
F: PROC (N} FIXED;
DCL N FIXED;

IF N = 0 THEN RETURN(1);
RETURN(N#F(N-1}};

END F}

END FACT;

symbol table

/'or 1

symbol table
for PRINT

sy'mbol table

\ /for F symbol fable
block nods /for N
FACT \
block node
F
statemant node "
for DO statemont nodo
for IF clauzn\)ump'no.
t nods
:;suchLwL‘ " statement nodas 4 N (o)

for THEN clouse —(|

statemont node
for DO end esmfemon? nods\ .

for RETURN

° N/ \call

F// _
N/

statement node

for FACT end statement nods

for F end

N\

1

Figure 1-—The internal represertation of & program,
The example is greatly simplified. Only the state-
ments of procedure F are shown in detail.

2. The Block Structure

Each begin block, procedure, or on-unit is represented by a block node. The
entire tree is found via the external static pointer "root". The outside or
external environment of the outermost procedure is represented by a block
node whose type is "root_block" and which contains the block which represents
the external procedure.

Example:
X: proc; root declaration of x
end; \\block node ////
for external
environment
» \\\block~node for x
Format s del 1 block hased,
2 node_type bit(9),
2 level bit(9),
2 max_arg_no bit(9),
2 max_paramn_no bit (9},
2 first_temnp bit(18y,
2 last_teap bit(18y,
2 father ptr,
2 brother ptr,
2 son ptr,
2 declaration ptr,
2 end _declaration ptr,
2 default ptr,
2 end_default pitr,
2 context pty,
2 prologue ptr,
2 end_vrrologue ptr,
2 main ptr,
2 end_main DLy,
2 last_auto_loc bit {16y,
2 prefix bit(12y,
2 block_type bit(9),
2 descriptors_ugsed bit (1),
2 no_stack bit{1);
node_type - has a value of "000000001"b which identifies this as a block node.
level - is the nesting level of this block.

max_arg no_ -~ the maximum number of arguments in any call made by this block.

max_patram_no - the maximum number of parameters in all entries to this block.

first_temp, last_temp - "are used by the code generator to remember how it has
allocated fixed size temporaries.

‘father ~ points to the inmediately containing block. This pointer is null for
the root block.

brother - points to the next blockat this nesting level which has the same
father.

son - points to the first contained block.

declaration - points to the first symbol or label node declared in this block.

last_declaration - points to the last symbol or label node declared in this
block. '

zontext - used by the parse and declaration processor and is ignored by the
code generator.

2rologue - points to the first statement node of the prologue.
end_prologue = points to the last statement node of the prologue.

main -~ points to the first statement node of the main statement sequence.

2nd_main - points to the last statement node of the main statement sequence.

last _auto_loc - used by the storage allocator as a location counter for allo-
cating constant size automatic variables and temporaries.

prefix - the condition prefix of this block. See section 4.1 for a
definition of each bit.

block_type = defines the kind of block this represents. The valid codes are
given in the "block-types" include file listed in the appendix.

descriptors_used - this block has a parameter whose extents are given as an
asterisk.

no_stack - this block shares its stack frame with its parent block.

3. The Representation of Declarations

Two data bases are used to represent declarations: the token table and the
symbol table. The token table contains an entry for each unique token
(operator, delimiter, identifier, constant) in the source program. |t does
not reflect the block structure of the program and can be considered a vector.
The symbol table consists of lists of symbol and label nodes attached to

block nodes. Each block node contains a uni-directional 1list of symbol and
label nodes which represent the declarations made in that block.

3.1 The Token Table

Each token table entry represents a unique token found in the source program
or generated by the compiler.

-ormat:

del 1 token ‘ based,
2 node_type bie(9);
2 type Bit(9);
2 size ‘ fixed bin¢15),
2 declaration PLi,
2 next Ptf, . R o
2 strihg . char(n refer(token.size)) alignead:

node_type ~ has a value of "000000101"b which identifies this node as a token
table entry. '

lype -~ has one of the values listed in the appendix. This value describes the
kind of token represented by this node.

Irn

iize ~ is the length of the token.

declaration - points to a uni-directional chain of symbol and label nodes
which describe the declarations of this token. This pointer is null for tokens
cther than identifiers.)

3

ext - points to the next entry in the token table.

string = is the character string representation of the token.

3.2 The Symbol Table

“he symbol table consists of lists of symbol and label nodes attached to Block
nodes. Each block node contains a pointer to a uni-directional chain of symbol
and label nodes, each of which represents a declaration in the block. ’

4.2.17 Label Nodes

-

/. label node represents the declaration of a statement label or format label
constant. It may be a scalar or array. Entry labels are represented by symbol
rodes, not label nodes.

Format:
dcl 1 label based,

2 node_type bit(9),.
2 source_id,
3 line_nunmber bit (18,
3 statenent_nufiber bit(9),
2 unused bit (13,
2 dcl_type bit (3},
2 unused?2 bit(2),
2 array bit (1),
2 allocated bit (1),
2 Jocation bit(16y,
2 block_node ptr,
2 token ptr,
2 next) ptr,
2 nulti_use ptr,
2 gross_refereiice pty,
2 statement ptr,
2 low._boung fixed bnin(31y,
2 high_bound fizxed bin(34%y;

die_txgg ~ has a value of "000001111"b which identifies this node as a label node.

§gg£ge_ia - describes the statement on which this label appeared. For label

arrays it identifies the first statement on which one of the array elements appeared.

del _type ~ describes the manner in which the label was declared: "010"b means
that the label appeared in the program as was declarsd by explicit context.
"101"b means that the compiler created this label. ’

array - identifies this as a constant label array.

allocated - indicates that the storage allocator has assigned an actual
location in the object program for this label.

location - the address assigned to this label by the storage allocator.
block_node - points to the block node which owns this declaration.

token - points to the token table entry for this identifier.

next - points to the next symbol or label node in this block.
multi use = points to the next declaration of this identifier (in any block).
cross_reference - points to a uni-directional chain of cross reference nodes,

each of which contains a statement-id if a statement which references this
label or label array.

statement - points to the statement node representing the statement on which
this label appeared. For label arrays this points to the first statement on
which one of the array elements appeared.

low_bound ~ the lower bound of the array.

high_bound - the high bound of the array.
3.2.2 Symbol Nodes

A symbol node represents the declaration of a variable or constant (other

than label constants). All scalar and aggregate values are represented in

a uniform manner. Variables, constants, entry names, file names, condition
names, and temporaries are represented by symbol nodes with the proper storage
class and type attributes.

“ormat: gey 1 symbol based,
2 node_type bit (9).
2 souvrce_lid,
3 line_number it (18,
3 statement_number . bit(9),
2 level bit (6},
2 scale bit (7).
2 dcl_type bit(3),
2 boundary bit(3),
2 allocated bit (1),
2 location bit(16y,
2 block_node ptr,
-2 token ptr,
2 next ptr,
2 multi_use ptr,
2 cross_references ptr,
2 initial PLr,
2 array ptr,

NRONNDODODOLODODOOND NN

NN DODOVNNNNODNMONDNDODOD NN

10

descriptor
equivalence
reference
general
father
brother

son i
word_size
bit_size
dcl_size
c_word_size
c_bit_size
c_dcl_size

structure
fixed
float

bit

char

ptr
offset
area
label

entry

file

arg_descriptor

storage_block
unused
condition
format
builtin
genecric
picture

dimensioneg
initialea
aligned
unaligned
connected
uncennected
varying
local
decimal
binary -
real
complex
variable
reducible
irreducible
returns
pogition
internal
external
like

member

ptr,
ptr,
ptr,
ptr,
ptr,
ptr,
ptr,
ptr,
ptr,
ptr,
fixed pin(31y,
fixed pin(314,
fixed pin(319,

aligned,

LSSV VIR SN SR CESCESESESESE] OO

NNV

i

auto

based

static
controlled
defined
parameter
param_desc
constant
temporary
return_value

print
input
output
update
strean
bitstream
record
sequential
direct
transient
buffered
unhuffered
backvards
keyed
exclusive
environnmnent

abnormal
packed
passed_as_arg
allocate

set
exp_extents
refer_extents
star_extents
no_argunents

no_return_value

12

node_type - has a value of "000000110"b which identifies this as a symbol
node.

source_id -~ identifies the statement which declared this value. An all-zero
source_id indicates a compiler created declaration.

level - is the structure level (0 and 1 are both "level one" declarations).
scale - is the arithmetic scale factor and is a signed quantity,

dcl_type - indicates how the declaration was established. The values of this
field are defined in the "declare_types" include file listed in the appendix.

boundary - describes the storage boundary on which this item is to be
allocated. The values of this field are defined in the boundary include file
listed in the appendix.

allocated -~ indicates that the storage allocator has allocated this variable.

location - the address given to this item by the storage allocator.
block _node - points to the block node which owns this declaration;

loken - points to the token table entry for this identifier. (Constants and
temporaries will have a null value for this pointer).

next - points to the next symbol or label node in this block.

multi_use - if this declaration is ,a literal constant, this points to the next
Titeral constant in the program. If this declaration is a temporary this points
to the next temporary in the program. If this is a variable or named constant
this points to another declaration of the same name.

cross_reference = points to a uni-directional chain of cross reference nodes
sach of which contains the source-id of a statement which references this
declaration. (ltems without names have a null value for this pointer.)

initial - if this item is an internal entry constant this points to the entry
statement on which the entry name appeared.” [f this item is a named constant
or initialized variable this points to a list node or tree of list nodes which
represents the initial or constant attribute. If this item is a literal
constant this points to the binary representation of the constant's value. If
his is a "defined" value this points to the symbol node of the base value.

array - points to an array node which describes the number of dimensions, the
bounds, and the multipliers of this array. Refer to section 3,2.3.

lescriptor - points to a symbol node whose type is arg_descriptor and whose
storage class is automatic, constant, or param_desc. If it is a constant it will
eppear in the constant list, otherwise it will be in the same

de

13

block as the declaration which it describes. The semantic translator creates
declarations of descriptors when it processes function references and calls. |t
generates assignment statements to assign the proper values to the descriptor

- either in the prologue or immediately before the statement containing the

~ call. If this is an array, the element descriptor is found via the array node.

equivalence - points to the reference given in the defined attribute or to
the base constant of a group of equivalenced constants. (See section 3.2.5.)
If the type is arg descriptor for an array element, this may point to the
basic descriptor of the entire array.

reference - points to a reference node which describes how to access this
value at run-time. For arrays this reference node describes how to access
the first element of the array.

general - A general purpose pointer whose meaning depends on other attributes.

=18 A1

-t
.

offset data - points to the area reference given in the offset attribute.
2. pictured data - points to the token table entry representing the picture.

3. entry - points to a uni~directional chain of list nodes each of which
points to a symbol node describing a parameter of the entry.

4. generic - points to a uni-directional chain of list nodes each of which
points. to a symbol node describing an entry descriptor, and to an entry
reference.

5. structure - points to the reference given with the like attribute.

6. file constant - points to the declaration of the file block used at
run-time. ’

Jather - points to the symbol node of the immediately containing structure.

hrother - points to the symbol node of the next structure member at this level.

son - points to the first member of this structure. (null for non-structures) .

word size = points to an expression giving the size of this item in words
rounded if neoessary). If the size is constant this field is null.

bit_size - points to an expression giving the size of this item in bits. If
“he size is constant this field is null. (Both bit and word sjze of dimensioned

data is the total array size, not the element size).

del_size - points to the declared size of areas or the declared length of strings.

14

c_word_size - constant size in words (rounded if necessary) .
c_bit_size - constant size in bits.
c_dcl _size - constant area size, string length, or arithmetic precision.

The bits of the symbol node are generally self explanatory and are derived
from the declare statement and default rules of the language. The compiler-
created attributes are described below:

abnormal - computations involving this value cannot be optimized because the
value may change without any explicit indication in this program. A valuye is
abnormal if:

it is based, defined, parameter, or external.

it is passed by reference

it is used in an addr built-in function

it is a member of an abnormal structure or is a structure contalnxng
abnormal values

W

packed - this value is:

a packed aggregate (a packed aggregate contalns only packed data)
unaligned arithmetic data

unaligned non-varying string data

unaligned pointer data

S~NW =

set - this item appears on the left side of an assignment, in a get list, a
read into() statement, or as an argument passed by reference.

star_extents - this item has asterisk extents.

exp,_extents - this item has non-constant extents

refer extents - this item has refer extents or belongs to a structure which has
refer extents.

no_return_value - this entry is not a function.

no_arguments - this entry has no arguments.’

3.2.3 Array Nodes

The array node and ils associated chains of bound pairs serve to describs the
elements of an array and provide pre-computed multipliers for use by the sub-
script processor module of the semantic translator.

15

Format:

dcl array
node_type
number_of_dimensions
offset_units
c.element _sgize
c_element”gize_bits
c_virtual_origin
element _size
element_size bits
virtual_origin
bounds

degc_bhounéds
element_descriptor

ES LS SESESESESESCENE SN SE TR

del bound
node_type
c_lover
c_upper
c_multiplier
next

lover

upper
multiplier

NN

based.

bit(9),

bit (7)),
bit(3),

fixed bin(31),
fixed bin(31),
fixed bin(31)y,
ptr,

pti,

pti,

Ptra

ptr,

ptr;

baged.

bit (9),

fixed bin(31),
fixed bin(31),
fixed bin(31%),
th,

ptr,

ptr,

ptys

node_type - has a value of "000001000"b which identifies this node as an
array node.

number_of_dimensions - the number of declared dimensions, plus all dimensions
inherited from confaining structures.

offset_units - indicates the units of the multipliers. The permitted values
are defined by the boundary include file listed in the appendix. Note: de-
scriptor multipliers are always in bits if the item is packed, words if it

is not.

c_element_size - constant element size in words (rounded if necessary) .

c_element_size_bits - constant element size in bits.

¢ virtual origin ~ constant offset of the Oth element (when subtracted from the
offset of the first element).

16

element_size -~ points to an expression giving the element size in words.,

element_size_bits - points to an expression giving the element size in bits.

virtual origin -~ points to an expressfon which when subtracted from the offset
of the first element gives the offset of the Oth element.

bounds - points to a uni-directional chain of bounds nodes each of which gives a
lower bound, upper bound and multiplier. These multipliers are measured in the
units indicated by offset_units.

desc_bounds - points to a uni-directional chain of bounds nodes each of which

gives a lower bound, upper bound and multiplier. These multipliers are used in
constructing argument descriptors. The multipliers are in bits if the item is

packed, otherwise they are in words.

element_descriptor - points to a symbol node whose type is arg _descriptor.

That descriptor describes the elements of this array and is used when one of
those elements is passed as an argument ta any entry which requires descriptors.
If the equivalence pointer of the element descriptor is not null, it points

to the descriptor for the entire array.

3.2.4 The Initial Attribute

The initial attribute of PL/1 is a list of initial items each with a repetition
factor or implied repetition factor of one. Each initial item is either an
expression, an asterisk, or another initial list.

The parse of an initial attribute .is a uni-directional chain of list nodes each
representing a single initial item. The nesting of the initial attribute is
reflected in the parse as shown below:

—> repetition factor

—= initial value

list node for next
initial item at
this nesting level

The repetition factor is an expression. The initial value is ejther an expression,
a token table entry for an asterisk, or another chain of 1ist nodes representing
the parse of the nested initial 1ist.

17

3.2.5 Storage Classes

The storage mechanism used to contain a value at run-time is defined by the storage
class bits of the symbol node.

'3.2.5.1 Automatic

If the size (extents) of the value are variable the prologue will contain a
statement explicitly allocating the value using an "allot-auto" operator. This
operator returns a pointer value which is used to qualify all references to the
variable. The code generator does not allocate such variables and it assumes
that all necessary pointer qualification has been done by the semantic translator.

Constant size automatic values are allocated by the storage allocator module
of the code generator. It only allocates this value if the "allocate" bit is
on. Having allocated the value, it sets the "allocated" bit and Tills in the
"location" field of the symbol node. The location field contains the stack
offset of the value. The code generator will add this stack offset to any
address it prepares for the value.

The code genesrator always creates accessing code with the proper block quali-
fication %or display) pointers. The block qualification is not explicitly
described in the internal representation.

3.2.5,2 Based

The code generator does not allocate based values. It computes their addresses

by evaluating the offset and qualifier expressions found in the reference node
used to access the valus.

3.2.5.3 Static '

Internal static values are allocated by the storage allocator module of the
code generator. If the set bit is on, the value is placed in internal static
storage (the linkage section) and the "allocated" bit is turned on. The loca-
tion field is set 1o contain the offset of the value within the linkage section.
This offset is added to any address developed by the code generator.,

If the value is not set but is referenced (the "allocate" bit is on) and does
not have an initial attribute the storage allocator issues a diagnostic warn-
ing the user that the value is used but not set. If the value is used, not
set, and is initialized the value has its storage class changed to constant
and 1s allocated within the text of the ob ject program,

Internal static values are initialized by the storage allocator and do not re-
sult in the creation of initialization code in the object program. (Areas are
an exception and are done the first time the prologue is executed). Note that
areas must be initialized to the empty state by explicit code in the prologue.

18

External static'values result in the generation of a link (symbolic reference)
in the linkage section of the ob ject program. The storage allocator creates
the link and sets the "allocated" bit on. The "location" field is set to con-
tain the offset of this link. All addresses developed by the code generator
are effectively indirect references through the link.

If the name of the variable has no $, the link contains information used by
the linker (via datmk) which allocates and initializes the variable in stat_
the first time it is referenced in the process. The initial value is compil-
ed into the text of the object program. Areas are initialized by datmk. If
the name contains a $, the lirk does not include initialization or dynamic
allocation information.

3.2.5.4 Controlled
Controlled is not supported by this version of the compiler.

3.2.5.5 Defined

No storage is allocated for the value. The code generator develops addresses
by combining the address developed from the reference node, and the "location"
field of the symbol node found via the "initial" pointer. The initial pointer
points to the symbol node of the base value on which this value is defined.

If the base value is external static the final reference created by the code
generator is indirect through a link.

3.2.5.6 Parameter

Two methods are used to access a parameter and its descriptor:

If a parameter appears in the same position within all entries the "allocated"
bit is 'set on and the "location" field gives the parameter's position. All
references to the parameter are qualified by a locator expression consisting of
a "param_pir" operator. The parameter's descriptor is similarly qualified by

a "param_desc_ptr" operator. Both of these operators select the kth argument
or descriptor pointer. '

If a parameter appears in more than one position within different entries, the
"allocated" bit is off and the "location" field is zero. The reference node used
to access the parameter will be qualified by a unique automatic pointer declared
by the compiler. A similar pointer will be used to qualify the parameter's
descriptor. Both of these pointers will be set by assignment statements gen-
erated al each entry. They are set by parzm_ptr or "param_desc_ptr" operators.
lefer to section 4.5.6. '

19

3.2.5.7 Param—Desc

This storage class is used for parameter descriptors and functions exactly
like the parameter storage class. The compiler may create additional declar-
ations of this storage class for entry(), returns({, and generic() attributes.
Such declarations have no meaning after semantic translation and have no
effect on the code generator since it never finds any references to them.

3.2.5.8 Constants

Named constants such as entry and file constants are represented by symbol
nodes whose storage class is constant and whose type bits are file or entry.
They are not part of the pooling mechanism used for literal constants.

Literal constants may result from source program constants or may be compiler-
created. They have no name and therefore do not refer to a token table entry.
-ach declaration of a constant consists of a symbol node and associated refer-
eance node. All such declarations are threaded on a uni~directional chain
beginhing with the external static pointer "constant_list". Each symbol node
contains attributes which describe a value. The binary internal representa-
tion of the value is referenced by the "initial" field of the symbol node.

“he chain of literal constant declarations is maintained in order of increasing
size of the constant's value. More than one declaration may refer to the same
value. Such groups of constants are said to be equivalenced. All declarations
vhich have been equivalenced to another have their equivalence pointer set to
refer to the symbol node of the constant to which they are equivalenced. A
constant which is the base of other equivalenced constants is itself never
equivalenced. ’

.Example of equivalenced constants:

AN

del (equivalence pointer)
N
del
/))
V ¥ \\s{ \%
value dcl
% N

del

(initial pointer)

20

3.2.5.9 Temporéry Values

The result of each operator is represented by a declaration of a temporary
value. Each declaration consists of a symbol node and asscciated reference
node. The symbol node contains all the attributes of the value and has a
storage class of "temporary" or "return-value".

A1l such temporaries are threaded on a uni-directional chain beginning with
the external static pointer "temporary_list". The procedure "declare_temp-
orary" does its best to pool temporary declarations to minimize the amount
of compiler storage needed to represent these declarations.

Values which are never referenced elsewhere in the program have a storage
class of "temporary", and a zero "allocate" bit. They are allocated and
freed by the code generator at its discretion.

Values which must be maintained for an extended period of time because they
are referenced elsewhere within the same region of the program have a storage
class of "temporary" and a "1"b allocate bit. When the ob ject program first
compiles their value it retains it until the next statemeni having a free_
temp attribute. (See statement node in section 4.1).

Values which must be maintained for the duration of the block are repre-
sented by automatic variables declared in the symbol table. Such variables
are not shared and appear as normal variables except that they have no name.

Values returned by functions whose return attribute contains asterisks
(returns(char(*)){ are represented by declarations whose storage class is
"return_value". . These termporaries are allocated by the called program
but exist in the caller's stack. They continue to exist until a statement
having a free-temp attribute is executed.

4. The Representation of Executable Statements

The executable statements of a block are represented by two bi-directional
chains of statement nodes attached to the block node. One chain represents
the prologue statements generated by the compiler, the other represents the
statements written by the programmer or generated from statements written by
the programmer.

21

4.1 Statement Nodes

Each statement is represented by a statement node.

Format:

dcl 1 statement hased,
2 node_type bit(9);
2 statement_type bit (9),
2 source_id,
3 line_nunber bit (18),
3 statement_number bit (9},
2 prefix bit(12),
2 optimized bit (1),
2 generated ~ bir (1),
2 free_tenmnps bit (1),
2 reference_count bit (12),
2 next pti,
2 back , ptr,
2 root ptr,
2 lahels pPit.,
2 reference_list pty;

Qg§g=txge - has a value of "000000001"b which identifies this as a statement
node.

statement type - identifies the kind of statement. Its value is one of the
values defined by the "statement-types" include file listed in the appendix.

source id-~ identifies the original statement in the source text. Compiler—
generated statements will carry the eource_id of the original statement from
vhich they were generated or will be zero if no original exists.

prefix - describes the condition prefix found on this source statement or
inherited from the block. A value of "1"b means the condition is enabled.

loe]

E:

Meaning

underflow

overflow

zerodivide

fixedoverflow
*conversion
*size

subsoriptrange

stringrange
*stringsize
10-12 unused

VoI dhuadbwn-=

* not supported by remainder of compiler

22

optimized - this bit is set on by the optimizer when it first attaches a
list of available values to the reference list.

generated - this bit is set on if the statement is compiler-generated.

free temps - when the code generator encounters a statement node with this
attribute it releases all allocated temporaries and return values.

reference_count - indicates the total number of references made by the program
1o all labels of this statement. It is used by the optimizer for Flow
analysis.

next - points to the next statement node in this block.
back - points to the previous statement node in this block.
root - points to the computation tree which represents the operators and

operands of this statement.

labels - points to a uni-directional chain of 1ist nodes, each of which
points to a label node representing the declaration of a label that appeared
on this statement. Subscripted labels are represented by a reference node
which points to a label node. The offset field of the reference node
indicates which element of the label array appeared as a label on this state-
ment.

reference_list - used by the optimizer to collect a list of values which are
known to be available when control reaches this statement.

4.2 Reference Nodes

A1l values (except scalar label constants) are accessed via a reference node.
This node contains the offset, length, and other attributes which may be
unique for each reference.

Each symbol node has an associated reference node constructed by the declara-
tion processor. This node contains the offset of the item from its level one
containing structure. For arrays this node references the first element .

References which are not subscripted, or which do not otherwise have unique
offsets (via substr or based structure element references) all share the
reference node associated with the symbol node. References with unique
offsets, lengths, etc., do not share the symbol tables reference node but
use their own unique node. This sharing has no logical significance but
does reduce the size of the internal representation.

23

Format:
acl 1 reference
2 node_ type Ei:?g;‘
2 array_res bi%(1):
2 varying_vef ﬁit(1):
2 padded_ref bi ;
2 pad L6 (1)
2 byte pisity
2 half_word x‘?i““‘
2 crd ci1ls
2 ¢ ~offset beria
2 offsef fixed bin(31y,
2 symbol gzg‘
2 qualifier pti
2 length btr:
2 ¢_length | fixed bin(31);
node_type -~- has a value of "000000100"b which identifies this as a reference
node.

array_ref - indicates that this is an array reference, not an array element
reference.

varylno ref - indicates that this is a reference to a varylng string. (This

s uniqus = because substr(x,i,j) = y results in a non-varying reference to x even

when x is varying).

padded_ref - indicates that the last word of the value is not shared with
another value.

bit, byte, half_word, word - indicate the units of "the offset expression
or constant of{set.” ‘

c.offset ~ the constant offset. This field will be zero if the offset is
variable. : .

offset - points to the offset exprc551on If the offset is entirely constant
this field is null.

symbol - points to the symbol or label node which repreoents the declaration
of this value.

qualifier - points to the locator expression used to qualify this reference.

R4

length - poin{s to the length expression giving the current length of the
string value.

c.length - the constant current length of a string value.

4.3 List Nodes ' - B

The list node is a general purpose node used to chain together other types
of nodes. It is ysed to: 4

LA

1. chain together the label nodes or label reference nodes which repreéeﬁt
the label prefix.

2. chain together parameter descriptors of an entry(Jor returns{) attribute.
3. chain together the members of a generic() attribute.
4. 1o represent the initial attribute.

5. to represent argument lists and descriptor lists of arg_list operators.

Format:
del 1 is¢ based,
2 node_type bit(9),
2 number fixed bin (159,
2 element(p refer(list,number)y ptrj

node_type -~ has a value of "000001011"b which identifies the node as a list
node.

4.4 Operator Nodes
Each operation to be performed by the object program is represented by an

operator node. All source language operators and all compiler generated
operators have the same form and are sub jected to the same optimizations.

Format:
6el 1 operator based,

2 node_type bit(9),

2 ¢p_code bit(9).

2 ghargdﬂ bit(1),

2 optimized bit(4).

2 number . fiked pin(1i54,

»2 oberand(n rcfe?(operatorlnumbet)) per;

25

node_type - has a value of "000000011"b which identifies this as an operator
node.

op_code - is one of the op codes of the internal representation.

shared -~ indicates that this operator appears as a subexpression of another
computation elsewhere in this program. The optimizer uses this bit to keep

itself from getting into trouble.

optimized - this computation has been previously performed and it does not

need to be re-evaluated. Operand one contains the correct value. This bit

is the means by which the optimizer tells the code generator to suppress re-
dundant computations.

number - the number of operands

operand - pointers to the operands

4.5 The Operators
4+5.1 Arithmetic Operators
Arithmetic operands are:

1. binary, fixed {reallcomplex}

2. binary float {real]complex}

3. decimal {FixedlFloat}{reallcoﬁplex}
The code generator performs all necessary conversions between mode for cases
1 and 2. It performs conversions of mode and type for case 3. These conver-
sions are done by the code generator because it can exploit particular hard-

ware features. -

Operands may be any precision and scale. The desired‘éutput is defined by the
attributes of operand one.

Op_Code | Value - Definition

adad "000100001"p oond (1) <=opnd{2)+opna(3)
S$ub "000100010%Dp Qqnd(1)<mpqndg2)m9pnﬂ(§)
mult’ Y00C100011%p gqnd(1)<~pqnag2)*9pnd(§)
div "00010010G%Y opnd(1)<=opnda(2)/opna(3)

negate Y000100101"y opnd (1)<~ ~opnd(2)

26

4.5.2 String Operators

The operands of string operators are scalar string values. They are either a
all bit-strings or all character-strings. The boolean operators only allow
bit-string operands while the concatenation operator allows either. The -
reference given as operand one describes the desired result.

Op Code Value Definition

and_bits "G01000001" D onnd (1)<=onnd(2) & onndl3)
or_bits *001000010"p oond(1)<~oonad {2y lopnal3)
xor-bits "00TGC0011 Y oond(1)<~opnd {2y xor opna(3)
not_bits "OO1CG0100%y ovnd(1)<~ “ownal2)
cat_string #004000109"p opnd (1) <=0pnaf2) 1 lopna(3)

4.5.3 MAssignment Operators

Assignment operators are used to assign values to variables or to perform
conversions of values. They represent special cases of assignment which can
either result in very efficient code sequences or which allow the target of
the assignment to be accessed without regard to its declared attributes

(these are pseudo-variables).

The general assignment operator allows operands of any data type. Conversions
are permitted bstween any combination of arithmetic and string data, between
offset and pointer, between pointer and offset, between packed and unpacked

data, and it allows assignment of pointer to file, and integer to arg_descriptor,
arg_descriptor to integer.

assiqn S "001100001%b opnd(1)<~ounaf2)

Assign_size_ck allows assignments between any combination of arithmetic and
string data. |If the receiving value has insufficient precision or string
length to hold the valus the size or stringsize condition is signaled.

assign_size.ck v001100010y QvRA(T)<~onnd(2)
The special case integer assignment operators allow efficient code sequences to

be produced for some integer arithmetic operations. Their operands are
always fixed binary, single word integers.

asgign_zero v"G01160011%y oond({1)<=0

add..l.assign CC011C0100%), OLNA(1) <eopnat 1y 41
incr_assign "O0TIC0101"E onad(1)<~onrdl 1 topnal2)
decr_ assigu "C0T100110% obnd (1)<=0und{1ymopnal2)
diff_assign "001100114"p 5§nd(J)<w65nd§25mépndl1)

Note: 1t.is somewhat inconsistent with the "machine independent” design
philosophy for these spezial cases to bs detected by the semantic translator.
Later versions of the code generator may do these special cases thus elimi-
nating these operators.

27

The copy words operator is created by the semantic translator for aggregate
assignment when the two aggregates are of equal size, connected, and have
identical composition. Its operands are two aggregate or scalar references
and an integer expression giving the number of words tu be copied.

COPY_words »001101000"p move opnd(2) to opndt1) by opnd{3) words

The set_size operator is an accessing operator which allows assignment to the
current size field of a varying string value. ‘Operand one is a varying
string and operand two is an integer expression.

set_size “001101001%p cur. sizelowvnd(1))<oond(2)

The set_desc_size and set_desc_type operators are accessing operators
which allow assignment to the basic descriptor word of an argument descrip-
tor. Operand one is an argument descriptor variable. Operand two of the

set_desc_size operator is an integer expression, operand two of the set_
desc_type operator is a bit-string expression.

™m

_opnd{2)

~desc_slze ©001101110%h hits 30~35 of orna(f) <=
desc oPnd(2)

ct
et_desc_type *001101111"b pits 0229 5F oona(l) <e

n

The unspec_assign and string_assign operators are accessing operators which
allow operand one to receive a value as if it were a bit or character string.
Operand one may be a variable of any typs. The length field of the refer-

ence will be correctl(set to reflect the current length by the semantic
translator. Operand tw

]

vo is any arithmetic or string expression.

unspec_assign *¢01101010 b« unSveclopnd(1yy<wonna(2y
string_assign ©G01101011%y char_giring{oond (1))<~unnd(2).

The imag_assign and real_assi%n operators are used to assign to the component
parts of complex variables. Operand one is a complex variable {Fixedlfloat}
and operand two is any arithmetic or string expression.

imag_assign v001101100%, AmAA(oPnd (1))<monnd(2)
realma&?ﬁig’n "G01101101" D rgal(oﬂnd(1_))<¢«and(2)

4.5.4 Relational Operators

Operand one of the relational operators is always a bit-string value of length
one. -The other two operands are either: both arithmetic (see 4.5.1),

character-string, bit-string, pointer, offset, label variables, entry variables,
or file variables.

Relational operators other than = and £ are'illegal with complex, pointer,
offset, label, entry or file operands. All operands are scalar. There.may
- also be combinations of packed and unpacked values.

28

Op_Code Value Definition

less_than "010000001 b opnd(1)<=0nna(2) < onnd(3)
greater_than "O010000010"D opnd (1)<~opnd (2) > ocond (3)
equal "010600011"D onnd(1)<~opnd(2) = onnd(3)
not_equal "010000100"b oond(1) <= obndl2) "= opnd(3)

less_or_equal "010LC0T01"D oond(1)<~opnal2) <= shnd(3)
greater_or_equal "010000110%h opnd(1)<=opng{2) d>= opnd(3)

4.5.5 Transfer Operators

Operand one of a transfer operator is either a label node, a reference node
refering to a label node, or a reference node refering to a symbol node which
represents a declaration of a label variable.

The second operand of the jump_true and jump_false operators is a bit-string
value. The second and third operands of other conditional transfer operators
obey the rules specified for the operands of relational operators.

Op Code Value Definition

ump "010100001%D go to obpnd(1) ugc@ndi;ionglly_
jump_true "010100010%D ao to ound(1) if opnd(2) is not ¢
Jump false "010100011"p co to oonda(1) if opPnd(2) is"qll,O
jump—ifmlt "U10100100%Y)y o to opnd(1) if QDnde) < opnd(3)
Sump it ot "U10100101"p ap to oond(1) Lf opna{2) > opnd(3)
Jump_if.eq *010100110%p o to onnd(1) if opnda(2) = opnd{3)
Sump_if_ne "010100111%p ¢o to oond(1) if obna(2) "= ppnd(B)
jump_if_le "G10101000"D o to oondl{1) if opnal2) <= opnd(3)
Jump_if_oe "G10101001% o to onnd(1) if obna(2) D= opnd(3)

4.5.6 Call, Save and Return Opera{ors

The std_arg _list operator results in the creation of a Multics Standard
Argument List in automatic storage. Operand one represents the argument
list. During argument list creation all argument expressions are evaluated.

The quick_arg_list operator results in the creation of a quick argument
List in automatic storage. Operand one represents the argument list.

Operand two is a list node containing a vector of pointers to the argument
expressions. The last argument of function references is the return value and
is a "return_value", allocated "temporary" or "automatic" value. "Return
value" storage class means that the called procedure will allocate space for
the return value. (Sse 3.2.5.9.)

29

Cperand three is a list node containing a vector of pointers to the argument
descriptors. If no descriptors are needed operand three is null.

std_arg_list "011000001"b oond(1)<~arqlist(opnal2) desclistlovndi3)))
quick_are 1ist"011000010"b opnd(1)<~arglist(opna(2) desclistlornd(3)))

The std_call operator results in a Multics Standard Call. The quick_call
cperator results in a quick call. Operand one is null if the call is not

a function reference; otherwise it points to the reference node used to access
the return value. Operand two is an entry expression giving the entry to be
invoked. Operand three is null if there are no arguments or return value;
otherwise it is an argument list operator which prepared the argument list.

std_call "011000011"b opnd(1)<~call omnd(2) with onnd(3)
quick_call %011000100%D 5ona(j)§ﬂca}l‘0pn§(2),with opnd(3)

The std_entry operator results in the creation of entry descriptive information
and a Multics Standard entry sequence in the object program. The entry
descriptive information includes the number of parameters and type codes for
each parameter.

std_entry "511060101%D entz‘v(ox'gnd(j):.,.:_. é)?!‘xdfﬂ))
quick_entry *041¢00110"Dp eptry(oondf1)... obraln))

The quick_entry operator is used to define the entry to a quick subroutine.
It causes the crealion of a quick entry sequence in the object program.

ex_prologte *0{11000111"b exccute the prologle no Operands-
The ex_prologue operalor causes the prologue to be evaluated.

allot_auto "011001000"b oond (1)<~ addrel(stack,ovna(2))

The allot_auto operator makes permanent allocations in the stack. It is a
pointer valued operator whose second operand is an integer expression. The
storage is released by the return or non-local go to operator.

param. ptr "0T1001001"h onnd(1)<= ptr ¢ kth arcumgnt. k=opnd{2)

param_desC_btr "011001010%D oond(1)<= pir to kth descrivtors k=opng(2)
P A

The "param_ptr" and "param_desc_ptr" are used to access the argument pointer and
argument descriptor pointer which references the kth argument of the entry used
to invoke the procedure. They are used to assign these pointers to the auto-
matic pointers used to reference the parameter or parameter descriptor. See
section 3.2.5.6. :

std_return “011001041"b rettrn =no arcumentse

The std_return operator returns via the Multics S{éndard Return. It has no

arguments -~ an assignment statement has already zssigned the return value to the
last parameter.

30

return_value "011601160%p retura{opnal1y) A
quick_return - ®*0110601101"n return =no araumentse

The return_value ‘operator returns via the Multics standard return, but requires
the evaluation, allocation, and assignment of the return value to the last para-
meter. The descriptor of the return value has already been set.

The quick_return operator performs a quick return. Any return value has already
been assigned to the last parameter.

Example of a Call

AN

std_call
///i;// <null if no arguments or return value
entry
expression std arg_list
| null if no descriptors
reference to .
block storage list_node
value reference to reference to
<null if no descriptor 1 descriptor n
return value .
list node

return value

argument eig/;//,////// \\\\\\;::::j\\\\\\ reference to

argument exp 2 argument exp n-1

. —, AYM,,EW-/
4.5.7 Offset Operators

Cffset operators are used to compute the addresses of values at run-time. Their
output operands are binary inlegers and their input operands are usually binary
integer expressions. The "desc_size" operator has an arg_descriptor as operand
two, and the "bit_pointer" operator has a pointer value as operand two.

Op Code

bit_to_char
bit_to_vword
char_to_vord
half_ _to_word
vord__to.mod?
vord_to.modh
wvord _to.mod§
bit.pointer
read_size

bPound.ck

desc_size

4.5.8 Built-in Function Operators

*U11100001"p
*311100010%y
0111000117
“G11100100%
"G11100901%y
"0111001109p
"011400119%y
"011101000%y
"011101001%p
#011101010vy
¥OT1101110%

31

Definition
onnd (1) <= (onna(2)+5)/9
oond (1) <= (ODNdf?)+3J)/56
ovnd (1) <°'(oond(?)da)/“
onnd (1) <= (oond(2)f75/2
opnd (1) <~ {ovnd(2)+1)/2%2
0und (1) <= {oond(2)+3) 4y

(oond(2)+73/8*8

eohd (1) <~ bit offset of onn

(2)

cnnd(1) {= cur: cent length of bﬁnd(‘) _
orrd(1)<ﬂo»nr(z7 if <= oﬁnd(&) & >=on ﬂle)
ornd (1) <~ bits 20«35 of gesc

The built-in function operators are a miscellaneous group of operators which

support PL/1 built-in functions.

the language.

The types of their arguments are defined by

A1l argument conversions required by the language have been

done and are not implied by the operator.

0> Code

addr_fun

addr _fun_bits

ptr_fun
index_fun
off_fun
sign_fun
abs_fun
imag_£fun
real_fun
complex__fun
conjg._fun
min_fun
max_fun
mod_fun
repeat._fun
trlt 1211"0
verify
rel_fun
baseno_fun
aseptr_fun
addrel_fun
lock_£fun
clock_fun
unapec_ _fun
string_fun

Value

*i00000001°"
”100000010"b
1000000117y
Y100000100%D
"100000101%n
PI000G00910% D
¥400000111%Dp
"400001000"D
"100001001”b
100001010 D
100001011 %p
"100001100%D
"1000017101%D
"100CC1110%
100001111 %p
100010000%D
100010001y
#1060100106%
100010011 %Dp
*100010100" D
Y106010101"D
¥100010190"h
®*100010111%y
*1000G11000%Dp
*"100011001%p

3

Definition

ddar(onnd(?))
aodr(onnutﬁﬁ)

) otr(onnd(?3 obnd(B))
onnd (1)<= index{opnad(2).0Pnd(3))
opnd (1)<~ of{vct(opnd(Z)aODnd(S))
ownd(1)<» écn(onna(?ai

oonﬂ(1)< thtnbna(?))
ound(1)<"1maa{oond(?)3

onn Q(?)(anﬂl(Obnd(?))
oDDa(1)<“CGMD10Y(OPHd(Ya opnd(3))
Obﬂu(1)<“COH76(ODH§(?’30DH&(3))
ﬁnn4(1)<“m1n(onnn(7) onnd(n))
onnu(n)(wnwr(ohna(2) e ODRA(NY)
omnn(1)<rnod(onnu(?)aornd(?))
oond (1)< ,Lroai(opnlfz)noﬁau(3))
Ouno(1)fﬂur2nflaiﬁ(ouwd(ﬁ)»oond(g))
ovnd(1)<=verify{onnd{2)sopnd(3))
6un0(1)<"rn](ohnd(?))

oond (1)<~basenolovndi2))
5)n8(1)< ~has “ntr(ODPd()))
onné(1)<md“drol(onnd(“)aobnm(B))
onnd(1)<=sta C(Onnd(?\.opnd(“))
onnd (1)<~ clock reading

ounn(1)\ ununoc{opna(/))
opnd(1)<~char strinafopna(2))

QUDQ(1)<m
Dnd(1)<m
ound(1)<»

4.5.9

Additional operators are used to drive the code generator into creating code

for PL/1 input/output statements. These operators will be defined in a later

Input/Output Operators

version of this document.

‘mbarn
._parn
-_format
:_format
.format
e.format
h.format
a_format
n.format
skip_format
column_format
page_fornat
Line_format

1
]
1
<
B

Y100100001"D
"100100010"D
"100100011"Dp
¥1007100100%D
"100100101%p
"100900110%p
*"100100111"p
"100101000"Dp
*100101001%Dp
1001010109
®100101011%h
"100101100%n
*100101101%Dn

32

33

Appendix - Codes Used In The

Internal Representation

de¢l v(

dcl

del

del

{

(

root_block

external_procedure
internal_procedure

begin_bhlock
on_unit

34

block_tvpes,incl.pi

initial("000060001"p),
initial("000000010"n),
initial("000000011"p)y,
initial("000000100"p),
initial("000000101 b))

boundary,incl,pl1

bit_boundary

character_boundary

half_boundary
wvord_boundary
mod2_boundary
modh_boundary
mod8_boundary

by_declare

initial("0o01"d),
initial("Q10vhb)Y,
initial("011"h).,
initial("100"h),
initial("101"b),
initial("110"by.
initial("111"b))

declare_tyre.incl.vrl1

initial ("001%h),

by_explicit_context initlal("G10"h),

by_context
by_implication
by_compiler

block_node
statement_node
operator_node
reference_node
token_node
symbol_node
context_node
array_hode
hound_node
parametcr_nodc
list_node
defaunlt_node
rand_node
address_node
lahel_node

1 node
2 tyre

noedes.incl,pl1

aligned bas=qd,
bit(9);

initial("011"b),
inditial("i00"n),
initial (”"i101%D))

initial ("00000C001 b)Y,
initial("000000010"D)Y,
initial("o00000014"b),
initial ("000000100"H)Y,
initial("0000C0101"Dd),
initial ("Q00000110%h)Y,
initial("000C00111%h),
initial("o00001000"n)Y,
initial ("000001001%0)Y,
initial("o00001010%b)Y,
initial("o000001011"hY,
initial("000001100"hy,
initial("000001101%Dby,
initial("000001110"L),
initial ("000001111%0)y)

deld

(

statenent_tyves.,incl,pl1

/* statement types */

unknown_statement
allocate_statenent
assignment_statement,
begin_statenent
call_statenent
close_statenent
declare._statenent
delay_statemnent
delete_statement
digplav_statement
do_statement
else_clause
end_statencnt
entry_statenent
exit_statement
format_statement
free_statement
get_statement
goto_statenent
if_statement
locate_statenent
null_statement
on_statement
open_statement
procedure_statenent
put_statement
read_statement
return_statement
revert _statement
revrite.statenent
signal_statement
stop_statenont
system_on_unit
pnlock_statement
vait_statement
write_statement
default_statement

initial("000000200"nY,
initial("000000001YbY,
initial (000006010 b)Y,
initial ("0000060011"D)Y,
initial("000002100"h)y,
initial ("ooona101"ny,
initial("o00000110 b)Y,
initial(vo0Q000111v 0y,
initial ("0000G1000"b),
initial(*000n010019%bLY,
initial("e0c001010"bY,
initial("000001011" b)Y,
initial("o000001100"%n)y,
initial("000001101" DY,
instial("ol0001110" b)Y,
initial ("eoo001111" b)Y,
initial("C00010000")Y,
initial ("000010001%h),
Anitial("o00010010"n)Y,
initial("090010011"L)Y,
initial ("000010100"D),
initial("000010101"D)Y,
initial ("000010110"b),
initial (000010111 nY,
initial("000C11000%D)Y,
initial("000011001"n),
initial("000011010% b)Y,
initial{(*000011011" b)Y,
Anitial("o00011100"h)Y,
initial("00¢011401%byY,
initial("oQ0011110"b)Y,
initial ("000011111% DY,
Anitial("c00100000%"n)Y,
initial (0201600019 bY,
initial("000100010"b)Y,
initial ("0003000117ny,
insitial (000500100 H)Y)

dcl

system.,incl.pl1

max_p_flt_bin_1
max_p_flt_hin_2
max_p._ fix_bin.1
mayx_p_fix_bin_2

max_p_flt_dec.1
max p_flt_dec.?

max_p_ fix_dec_1
max_p_fix_dec.2

max_scale_bin
maxwgcale dec
max_bit_string
ma;_char_,trlng
max_area_size

bits_per_ \ord

charact@ _per_vord
blt&pr,_CﬂulaLtGr

default_area_size
default_flt_bin_p
default_fix _bin_p
cxc,uu?t_:{:l t_dec P
default_fix_dec_p

initial(27).,
lﬂitial(s:ﬂ)a
initiai(35),
initial(71),

initial(8),

initia1(18),
inttiar(1¢y,
initial(21),

initial(gguga),
initial1(e999y),
inditial(2359296),
initial(2621u0),

initial(65536),

initial(3s)
initial(u),
initial(9),

[4

indtial (1024,
1riL1a1(?/')¢
1n1tis}(17),
j]lji 61(2’“);
initial(s))

dcl

(

no_token
identifier
isub

plus
minus '
asterisk
slagh
cXpon

not

and

or

cat

eq

ne

it

gt

le

ge

nagt

nlt
assignment
colon
semi_colon
commea
period
arrov
left_parn
right_parn
bit_string
char_string
bin_integer
dec_integer
fixed_bin
fixed_dec
float_bin
float_dec
i_bin_integer
i_.dec_integer
i_fixed_bin
i_fixed_dec
i_float_bin
i_float_dec

37

token_typeS.incl.pli

initial("C00000000"D),
initial ("100000000"Dn),
initial(*010000000"Db),
inltial ("001000001"p),
initial ("009000010"n),
initial (*00160G011"b)Y,
initial(*001000100"Db)Y,
inttial("001000101"Dp),
initia1("001000110"n),
initial ("001000111"b),
initial("eo01001000"n),
initial("001001001"b),
initial(*001001010%D),
initial ("e01001011"p),
initiar("001001100"n),
initial1("601001101"n),
initial("C01Cc01110"b),
initial ("001001111%h) .,
initiar ("001010000"D),
initiar (veo1010001%n),
initial ("001010010"D),
initial ("¢01010011"D),
initial ("u01010100%n),
initial("001010101%n),
inditial(v001010110"p),
indtial(*001010111"b),
initial1 ("C01011000"D),
initial ("¢01011001"h),
initial (000500001 "D),
inditiai(vo00100010%h)Y,
initiai (*G00110001%p),
initial ("000110011"p),
initial ("000110000"pY,
initial("000110010"p),
initial("000110100"L)Y,
initda1("000110110%p),
initlial("000111001"D),
initial(v000111011"p),
initial("o0¢111000%n),
initial (*000111010"D),
initial ("¢00111100%L),
initial ("0004111110"D),

The following four token_tvpesS ate for fortran only

label _argument

hollerith_constant_headev

x_format_¥§

logical constant

initial (010000001 b)Y,
initial ("0100C0010"bY,
initlad (0100000149 n)Y,
initial ("0001C00017HY)

