Debugging PL/I Programs in the Multics Environment
by
Barry L., Wolman
Honeywell Information Systems
Cambridge Information Systems Laboratory
575 Technology Square
Cambridge, Massachusetts 02139

(617) .491-6300

ABSTRACT

The problems associated with debugging a program written
in PL/I are simplified in the Multics system because of a
number of factors. PL/I is the standard language used for
programming in Multics. Run-time features required by PL/I

programs such as a stack, pointer variables, and a condition

' mechanism are all directly supported by the Multics system,

The Multics PL/I compiler is complete, has few restrictions,

and produces efficient object programs., A variety of powerful
debugging commands make use of a run~time symbol table generated
by the compiler thereby allowing the user to debug his program
symbolically. Statistics about the operating characteristics

of a program such as the time spent in a particular set of
procedures of'the cost of executing a given PL/I statement can

be accurately determined.

Debugging PL/I Programs in the MWUltics Environment
by
garfy L., Wolman
HOonaywell Information Systems
Cambridge Information Systems Laboratory

Cambridgé, massachusetts

INTRIDUCIIQN
one of the Ppopular misconceptions concerning PL/T Is that
prograns written in PL/I are necessarily inefficient and hard to
febuy, Several years expetience with the wultics PL/I compiler
tunning on the.aoneywall 645 has shown that 4in spite of the
apparent complexitY of the pL/I lanéuage. PL/I prbqrams are
easily dabugged in the Multics environment, even by novice users
who are newvcolMers to PL/I and are unfamiliar with the Honeywell
§45, In most cases the User ganh debug his program symbolically
without having to refef to a 1listing of the generated
instructions or add dsbugging output statements to the program.
rﬁis is juye to a number of factors:
. the rUnetime environment provided by the system,
. the implementation of PL/I,
» the aVailability of a varietyY of voverful debugging
facilities,
IE ENVIRONHENT
The use ©Of PL/I as the principal tool for programming by
asesrs of uultics wasS envisiofied at the Very start of the project,

Faatures which are required by ©pPL/I such as a Stack, pointer

Debugging PL/I Progranms Wolman

variablés, conditions, ani a recursive call/return mechanism are
all provided and are aireCtly.supported by the system hardwvare
ani/or s>ftware, consequently, the basic Multics environment is
idgally suited to thg needs of PL/I Programs, In fact, negarly
all of Kﬁitics itself is coded in PL/I and executes im this
self~maintained environment,

The Multics System currently pCovides *fhe uUser with a
virtual adiress space of over 1000 segments c%fessss vords each
(somz changes noOv in progress will increase the maXimum size of a
sagmant to 262144 woris), Access to these segments is by means
9f PpL/I pointer variables which contain a segment number, a word
offsat, and a bit offset, There 1is a direct correspondence
betwzen PL/I Pointers and virtual addresses in Multicss PL/I
pointer values May be loaded into the addressing registers of the
545 by a single machine instfuction, AR attempt to use a pointer
whosz2 value is the PL/I null pointer causes a condition to be
signallel, |

The PL/I stack 4is maintained fof each user as a Sseries of
contiguous frames (block activation records) within a sinagle
segmant, A register is dedicated by the system to point at the
stack frame of the Procedure being executed, mMultics deflnes a
systam-wide standari call/save/retutn sequence which is
relatively effjicient, Stack frames can be ohtained and released
by executing a few instructions,

prozedure Segmants in Multics are nofmali? pure and

sharable, AcceSs to procedufe and data segments is set by the

Debugging PL/I Progranms Wolman

dultics access Gontrol commands and checked by the hardwvare at
gach instruction and 3ata reference, If a WSer 40eS not haVe
appropriate access %o a seqment,.or if any other error such as an
attenpt to divide by zero habpens, a machine fault occurs, This
faulﬁ is turned into a PL/T éondition (e.g., "accessviolation” or
"zersdivida") ani is signalled by the PL/I condition mechanisnm,
All but a gew catastroppic efrors are pandled in thpis manner,

Multics provides a defadlt error on.unit which is invoked if
the user has not established an on-unit for a specific conditiszn,
In most cases, the default on-unit prints am appropriate error
nessage (which May include information as to probable causes for
the srror) and calls the command procesSor to read a command from
tué ysar’s input stream, Thé stack chaln of calls leading up to
the £ault i5 preserved; 4in many caSes the user's program can be
restartel,

In Multics there is no teal difference between a command and
1 progran Hriftgn bY the USgF} both are PL/I ProceglrgS. ANY
progran written in PL/I following command argument conventions
n»ay be invoked as a "command”,

when the uSer types a command line of the form

edit alpha beta
the Multics command processor searches a specified set of
1irectories for a procedufe named "edit"™ and issues the
quivalent of the PL/I statement
call edit("alpha","beta");

The procsjures found in the system directories are the "commanis”

pebugging pL/I programs wolman

ani stility procedures normally availaple to Multics users,
Sincy the USel Cal Change the search rules usSeg bY the sYstems he
can tailor his own command seét 1f he chooses,
IyE IMRLEMENTATION |

The impleMentation of ﬁL/: in Multics 4is vparticularly
complete and has fev restrictions, The only omission of any
consaquence is tasking, The Multics imPlementation allows:‘
, arbitrary pointer gqualification dincluding chains of

Locators ani use of functions as qualifiers,

, adjustable 3ata with no restrictions, Arra¥s may have
any number of adjustable bounds, Structures may have
any number of ad-juStable members,

, operationS on aggregates,

. functions vhich return values whose length or bounds
are Rot known at the ¢time the call is made, i,e.,
returns{chac(*)) of returns((*) fixed bin);

. eutrf'variables.

. full stream and record I/0.

. all data types including complex and decimal,

since the implementation is so comPlete, the Programmer does

not have to worly about what features afe or are not avallable to

him, The ability to use the full language reduces the amount of

code ths user ha$ to delug by increasing the amount of work
handlel by the run~-time support system provided by the compiler,

' The.uultics PL/I compiler produces efficlent object code,

even whan meaSured against the best efforts of eXperienced hand

pebugging PL/I Programs Wolman

colers using asSembly language, The availability of a compiler
vhich jenerates efficient programs greatly reduces the desire for
ugers to want 0 switch to assémbl? language for reasons of
effiziency, This is particularly important in gultics because of
the richness of the machine instruction set (512 instructions and
64 types of address modification) and the complexity of the
system environment from the view point of an assembly language
Soder,

Mgltics PL/I makes use of a separate "operator segment”
which coatains assembly langfiage coding for about 50 commonly
used fun-tions Such as string moving, cOmplex multiplication, and
the index operator, as well &s tables of constants for masking,
shifting, stofing characters;, etc, This segment is shared by all
PL/i programs., Commupication with the ppEratbr segment is by
peans of a work area in a standard position in each stack frame,
The operator Segment 4is entered by a Short sequence of
instructions ”Wh;ch loads certain machine registers with
paraneters and then jumps directly into the operator Segment at a
knovwn lozation, The use of the operator segment reduces the cost
of PL/I erograms by rsducing their size and by reducing paging
activity, |

If a begin Dblock or dnternal procedure block does not
jeclare any aUtomatic variables with adjustable bounds or slzes
ani can only be entered by first entering its parent block, then
the block i5 Sald to be "guick”, The multics PL/I compiler does

not use a Separate stack frame for sUch blocks, Instead, they

Deby3gging PL/I Proglanms Wolman

sharas the stack frame of their parent block, The overhead of
call{nd a QuyCk Dblock., exciusyve of the cost of preparing the
argument 1ist, 1s only three dinstructions: one each at call,
entry, and return, The cost of a quick procedure 15 also reduced
becayse ahtomat;c storage in the parent block can be addressed
iirectly, \

the availability of a really inexpensive mechanism for
internal procedUres mesans that users can write ¢them without
having to worry about efficiency, The artifice of using label
variables and goto Statements to remove a block of code 80 that
it czan be executel efficiently from a number of places is not
necessary, |

| The compiler makes no restrictions on the format of
strusturess, This is 4impoftant, Since programmers cah chooSe a
struzturs jescription that i$ appropriate for the problem they
are trying to solve without having to worr? about its
acceptability fd the compiler, It is Possible for a user to
speclfy a sStructure which causes the compller to generate Very
expensive accesSing code, There are a few "common sensSe" rules
users can follov 4f they are concerned about the efficiency of
theirc programs,

Extsnsive error checking is done during compilation; thare
are nearly 500 possible error messageS. Except for a few cases
of multiple, rel;ted arrors within a single statement the Multics
PL/I czonpiler normally‘finas most errofs in a single run, It is

infrsquent that a uSer will correct a set of source errors and

pebugging PL/T Progranms Wolman

reconpila his program only to recelve another batch of error
nessages, ‘ _

The 1isting generated by the compller 4is designed to be
erintel by a high=speed 1line printer put is formatted so that
items 5£’interest t0 the uset éan be eaSily 1located by editing
the listing segmMent on~line, The user can control the amount and
level of detall of information placed in the listing, ‘
REAU3GIN: pACILITIES

Myltics provides a number of special commands which ald user
debuzging, There is a powerful breakpoint debig command, a
facility for tracing procedufe calls, ahd tools which help the
usar determine the operating characteristics of his programs,
Thera ars several oPtions that the user can specify vhen he uses
the PL/I compiler to cause it to generate additional information
far use by debugging commands,

_ The PL/I ccmpile; ani tHe system debug command cooperate to
allow the usér'to debug his program sympolically, The compiler
aormally generates a run-time symbol table only if "get data™ or
“put data® Statements are usSed in the source program, The
compller can be instructed to generate a "full" s¥Ymbol table
which includes all identifiers in the source progranm,

Each entrY 4in the run-time Symbol table describes an
fientifier in the uSer’s prodgram giving its name, Storage class,
location, size, bounds and other information needed to access the

tdentifiar, Information is available about the block in which

the ijentifier 4s 4defined as well as its relationship to other

pebyzging PL/I Programs . Wolman

membars of the Structure to fhich it belongs,
" The run-tiMe symbol table facility 4is much more povwerful
thap it peeds to be just to support data directed I/0,

., Parameters, defined, and based viriables can all bde
repreSented 4in the table, When a variable is declared
based on a specific pointer, e,g,, "dcl a Dbased(pP)",
information is kept which allovs the value of that
pointer to pe obptained at run~time,

. The sSize, offset; bounds, multipliers, or virtueal
origin ©of any 1dentifier can be any arbitrary
expreSsion, This %s necessary for the rePresentation
of based variables;

. ReferenceS to identifiers in the user's program £rom
data 4directed 4nput or from regquests to the system
debugger need not be £fully aqualified, The Ssame
algorithm usel by the comPiler to resolVe partially

- .qualified names is also used by the subport program

which searches the run-time symbol table,

The run~time symbol €able 4is generated at the end of the
object sagment and is shared by all usefs of the segment, If it
is not used during execution, there is no overhead required to
support ft: the pages it occupies will hot be brought into c¢ore
nenory; no code is required to initialize it, After the program
has been debugged, the run-time symbol table c¢an be eliminated

from the object segmMent without having to re-compile it,

pebuzging pL/r Progranms _ Wolman

The compiler will also generate a "map" of the object
erogran vhen a full symbol table is requested by the user, This
nap 4is a table, placed at the énd of the object seagment, giving
information about the location in the obJject segment of each
source statement, The availapility of this table means that the
user can refer to his object program by source line number, e.d.,
to set a breakpoint at a #pecific line number. Similarly, the
éystem dabugger can tell him the line numper corresponding to a
given location in the object program, In fact, the debugger can
even print the SolUrce 1lines that correspond to the object
location,

The commaRd "debug” can be invoked at any time; for
example, after an error condition has been signalled for which no
on-unit exists, It may al&o be called directly from the user’s
program, It acCeptS requests from the User for a&tiOns such as
examininy some location in the virtual memory or printing a trace
of the chain of.cal;s in the user’s stack, It is aware of the
1iffarent PL,/I data types;, so variables in the object program may
be dlsplayed in the gormat appropriate to their type,

When a program has been compiled with a run-time symbol
tabla, the user can crefer to it Symbolically, either with
tdentifiars defined in tha pfogram or bY the line number on which
a statenent begins, For example, Lf the user’s program was
lealing with 3 tvo~dimensional paSed aFfa¥y Of integers, he coulg
change one of the elements in the array by entering the reauest

P ~> X(4+5,3=2) = 3

Debugginy PL/I Programs Wolman

vhich takes the form of a PL/I style issiqnment. The values of
"p*, "i", and "3" wourd be obtained from the symbol table. Any
of the ijentifiers in this example could pe part of a struecture,.

The debug command ha$ other features which let the More
axperianéed user eXamine oﬁ alter the values 4in a machine
register or display the statfis of the machine at the time a fault
occurred, These facilities are not norMmally needed if a s}mbol
tabla is available,

The debUg command also lets the user set conditional or
anconditional bFeakPoints in object segments, When a breakpoint
is Founi during exescution, the debug command is entered and 1if
the associated condition is satisfied, a message is printed; at
this point the usSer can enter reqUests. One of the actions
availabla is to continue execution from the point of the break,
Ihera 4is a mode of executiofi avallable with debug which lets the
usefr run his program one PL/I statement at a time,

An 5bject‘§r0gram:may hive more than one break set in {t;
similarly, more than one program maY have active breakpoints,
Facilitiess are aVa;lable/ in debug f£or 1listing and altering
bfeaks, Setting g break involvesS changing the opject program, So
breaxpojnts remajn actyve untyy expljycjitiy removed by the user,
Breakpolnts Should not be @ised when other users are sharing the
gagmant, |

There is ah "esScape" facility which causes debug to pass the
line typel by the user to ¥he Multics command prbéessor instead

of treating it as a request, This alloWs the user to invoke any

-10¢

Dabugging pL/I Progranms Wolman

qultlcs command (opr any of his own programs) vithout having to
legaVa ths lebUg comMand, He could, for examble, Fun a special
progran to display the value$ of the static variables used by the
progran he is trying to debug,

The bbmmand "trace" 1et§ the user monitor all c¢alls to a
specifiel set of external procedures, Trace modifies the
Stanjard MUjticS proceaure 1ingage mechanism So that vhenever
control enters or leaves ohe of the plocedures specified by the
user, 2 iebugging procedure $s invoked, The arguments given to
the debugging procedurs by trace eRable it to reference the
argunents and return point of the procedure belng called, The
user can provide his own d€bugging procedures or he can use the
one supplied as a default by the tracing package.

The action taken by the default trace debugging procedure is
to print 3 mesSage on the usSer’s console whenever control enfers
or lzaves one of the procedufes being traced, There are a number
of options whi?h tha user cdn specify to request such actlons as
printing the arguments (at efitry, exit, or both) or stopping (at
entry, oxit, oOr both), The user can control the frequency with
which the tracidg message is printed, i,e,, every 100 calls after
the 1000th call., He can also specify the maximum recursion desth
he wishes to See, Tha USer ¢an also request that the tracing
nessage be printed only 3f the contents of some specified
location in the virtual memofy has changed.

The user may start tracing a procedure at any time, even it

has alrsady be€en exacuted; rTracing may be removed at any time;

- 11 =

bebugging pL/I Programs Wolman

subsaquent calls of'the procédure will execute normally, Any
pr&qadure which uses the staﬁdarg Multics calling sequence may be
trageq Without inteffering With other uSers Who mayY be Sharing
the segmant, |
| The two debugging packades "debug" and "trace” which wve have
just discussed help the usér £ind errors vwhich prevent his
program from running properly, There afe another claSs of errors
which are nmuch harder to £in8, These aFe usually £iaws Iin the
erogran lesign (of Perhaps ifl its implementation) which cause the
program to run cCorrectly bﬁi to take much longer to eXecﬁte than
it should, SiMply locating the largest statement in the program
or the biggest procedure is fiot sufficient to locate the causes
of program 4inefficiency, Without detailed knowledge of progranm
£low during execution, instriction counts alone are not much
good, |

The cost of executing a specified procedure, either for a
single c3ll or>§ total of many calls, can be determined by using
the "metar” option of the triace command, The system clock counts
in microsecond steps, so high resolution is possible,

once a procedure has been found to be dinefficient, Its
operatiny characteristics cafi be examined by re-compPiling it witp
the PL/I "profile” option [63, This option causes the compiler
t> generate 4N the dinternal static data ares a table which
contiins an entry for each sfatement in the source programz the
table antry containS information about the source line as vell as

a counter which starts out as zero, fach statement Iin the

- 12 =

Debuwzginy pL/I Progranms Wolman

progran 4is meodified to start with an instruction to add one to
the counter assOciated with ihebstatement,’

After running a program compiled with the "profile™ option,
the user can determine the fiumber of times each Statement in the
program was executed, The tible entry contains the rav cost of
the statament measurei in instructions, so the user can determine
both the absolute total cost for the statement as well as its
relative cost compared to other statemeits,

The paging characteristics of a Program can be measured by
gsing thes "page trace” facility, The nultics paging mechénism
maintalns a buffer for each user which records information about
the last ¥ page faults taken by the user’s process (currently N =
256)., A commaRd S available Which gOfmats the ingormation Kept
by the system,

QIEEICULIIES

As night be expected, tkere are problems aSsociated with
debugging PL/I. programs in Multics, MHost of these problems are
ninoc. an3 have the effect of requiring the user to Kknow more
about the internal workings of Multics than he might othervwise
have to knov,

The most difficult problem occurs when a program in the
user’s process commMits ap efror So Severe that the sYstem cannot
continue running the process, An example of such an error |is
using up the entire stack Segment (perhaps because of unlimited
recucsion), When the system detects am ervror of this magnituie,

it prints a mesSage such as?

w 13 =

%

QL/[“/ -/,(‘1

1

pebuzgingy PL/I Programs Wolman

Fatal ProCess@d Erfor

out of bcunié fault on user's stack
ani createS a New Process, thereby erasing all information about
the 5131 process. |
| This type Of error can Me very difficult to find, because no
information 4s available £o the user about where it occurred,
puture versions of pyultics will alleviate this problem by
allowing the User to retain informatlon about the 0l1d process,
Ihe systam will also be chanded to detect when the user is near
the end of his stack; when this occurs, a special "stack"”
sondition will be signalled,
EXPERIENCTE

Most of the debugging technigues we have discussed have been

used to aid the debugging of the PL/I compiler which is itself
written in PL/I. The PL/I code generator, a oprogram of 60,000
instructions of which half are modifications of previously
Jebugged code,‘ﬁas Written atd debugged by the author in 15
months, The entire compiler (150,000 dinstructions of which

two=thiris are New) was writften and debugged in 6 = 8 man yvears,

BEEERENCES

1, Organick, E, I..<zhg Mgltics System: An Examination of Its

it

Structure, M.I.T, Press finpress)y* Cambridge, Massachusettts
and Lonion, Englani,

2, Freiburghouse, Ry A., "The Multics PL/T Coméilef“; APIPS Conf.
Rroc. 35 (1969 FJcc), AFIES Press, 1969, pp. 187-199,

3, Bensoussan, A,, Clingen, C,T.; and Daley, R. C.» "The Multics

- 14 -

Debyaging PL/I Frogranms | c&qﬂ PV””P , Wolman

4

5,

e
virtual Memory", AGCHM Seécond SY ijum on Operating Systenm

princlples, (october 20-22, 1969) nceton University, oo,

‘33~Q2.

DaleY, Re C.r and Dennis, J. Bes ”Virtuél Memorys Processes
and Sharing 4n yulties”, Compn. ACM 11, 5 (May 1968), oe.
336-312,

The Multiplexei Information and GComputing Service:
Brogramners’ Manual, M.3.T. Project MAC, Rev, 10, 1972,
(Available from the M.I.T. Information Processing Center,)
Kauth, 0,, "An Empirical Study of pORTRAN Programs"®, Stanford

University computer Science Department Report No, CS-186,

- 15 -

