The BCPL Programming Manual
by
M. Richards

The Computer Laboratory,

University of Cambridge,

Corn Exchange Street,

Cambridge CB2 3QG April 1973

TABLE OF CONTENTS

1. INTRODUCTION
2. LANGUAGE DEFINITION

2.1 Program

2.2‘ Elements

2.3 Expressions
2.3.1 Addressing operators
2.3.2 Arithmetic operators
2.3.3 Relations
2.3.4 Shift operators
2.3.5 Logical operators
2.3.6 Conditional operator
2.3.7 Table
2.3.8 Constant expression

2. Section brackets

2.5 Commands
2.5.1 Agsignment
2.5.2 Conditional commands
2.5.3 For command
2.5.4 Other repetitive commands
2.5.5 Resultis command and valof expression
2.5.6 Switchon command
2.5.7 Transfer of control
2.5.8 Compound command
2.5.9 Block

2.6 Declarations
2.6.1 Global
2.6.2 Manifest
2.6.3 Static
2.6.4 Dynamic
2.6.5 Vector
2.6.6 TFunction and routine
2.6.7 Label
2.6.8 Simultaneous declaration

2.7 Miscellaneous features

2.7.1 GET
2.7.2 Comments and spaces
2.7.3 Optional symbols and synonyms

2.8 The run-time library
2.8.1 Input-Output routines
2,8.2 Other useful subroutines
2.8.3 Library variables
3. USING BCPL ON THE 370
3.1 Compilation
3.1.1 Library declarations
3.1.2 Diagnosticsa
3.1.3 Compilation options
3.2 Execution
3.2.1 Loading
3.2.2 Execution faults
3.2.3 A complete job
Appendix A Bagic symbols and synonyms
Appendix B The BCPL syntax
Appendix C The EBCDIC character code

Appendix D

Coammon extensions

1. INTRODUCTION

BCPL is a programming language designed primarily for non-
mmerical applications such as compiler-writing and general systems
programming. It has been used successfully to implement compilers,
interpreters, text editors, game playing progrems and operating systems.
The BCPL compiler is written in BCPL and runs on several machines
including the IBM 370/165 at Cambridge.

Some of the distinguishing features of BCPL are:

The syntax is rich, allowing a variety of ways to write
conditional branches, loops, and subroutine definitions.
This allows one to write quite readable programs.

The basic data object 18 & word (32 bits on the 370) with no
particular disposition as to type. A word may be treated
es a bit-pattern, a number, a subroutine entry or a label.
Neither the compiler nor the run-time system makes any
attempt to enforce type restrictions. In this respect BCPL
has both the flexibility and pitfalls of machine language.

Manipulation of pointers and vectors is simple and
straightforward.

All gubroutines msy be called recursively.

This manual ig not intended as a primer; the constructs of the
language are presented with scant motivation and few examples. To use
BCFL effectively on the 370 one must have a good understanding of how
the machine works and be familiar with its operating system. To the
experienced and disciplined programmer it is a powerful and useful
language but there are few provisions for the protection of naive users.

The main body of this manual describes the official standard
subset of BCPL which will be supported at most BCPL ingtallations.
Many of the larger installations provide extensions to the language and
a summary of the extensions availsble on the 370 implementation can be
found in Appendix D. Users are strongly recommended to remain within
the standard subset unless there are exceptionally strong reascns for
not doing so.

Acknowledgments

The overall layout and organisation of this mamual is based on
a manual written by J.H. Morris of the University of California, Berkeley,
which itself was based on a well-written memorandum by R.H. Canaday
and D.M. Richie of Bell Telephone Laboratories.

The initial design and implementation of BCPL was done on CTSS
at Project MAC in 1967 and since then the language has developed and been
trangferred to many machines around the world.

The machine code library was implemented for the 370 by J.K.M. Moody
and many of the language extensions for the 370 were implemented with the
assistance of H.C.M. Meekings. Many of the extensions were first designed
and implemented by J.L. Dawson.

The language design was strongly influenced by the author's
experience with CPL. This language is described by D.W. Barron et al
in 'The Main Features of CPL', The Computer Journal, Vol. 6, p.134.

2. LANGUAGE DEFINITION

21 FProgrem

At the outermost level, a BCFL program consists of a sequence of
declarations. To understand the meaning of a program, it is necessary
to understand the meaning of the more bagic constructs of the language
from which it is made. We, therefore, choose to describe the language
from the inside out starting with one of the most basic constructs »
namely the 'element!.

2.2 Elements

<element> ::= <identifier> [<number> |
<string constant> [<character congtant> l
TRUE | FALSE

An <identifier> consists of a sequence of letters, digits and
underlines, the first character of which must be a letter.

A <number> is either an integer consisting of a sequence of
decimal digits or an octal constant consisting of the symbol e
followed by octal digite. The reserved words TRUE and FALSE denote -1
and O respectively (on a 2's complement machine) and are used to
represent the two truth values.

A <string constant> consists of up to 255 characters enclosed in
string quotes ("). The internal character set is EBCDIC (on the 370).
The character "may be represented only by the pair *" and the character
* can only be represented by the pair **, Other characters may be
represented as follows:

*N 18 newline

*T 18 horizontal tab
*S 1s space

*B is backspace

*P is newpage

The machine representation of a string is the address of the
region of store where the length end characters of the string are
packed. The packing and unpacking of strings may be done using the
machine degendent library routines PACKSTRING and UNPACKSTRING, see
gection 2.8,2,

A <character ~onstant> congists of a single character enclosed
in character quotes ('). The character ¥ can be represented in a
character constant only by the pair *°, Other escape conventions are
the same as for a string constant. A character constant is right
Justified in a word. Thus 'A? = 193 (on the 370).

2.3 Expressions

Because an identifier has no type information associated with
it, the type of an element (and hence an expression) is asssumed to match
the type required by its context.

All expressions are listed below.
arbitrary expressions except as noted in the descriptions which follow
the list, and KO, K1 and K2 represent constant expressions (whose values
can be determined at compile time, see section 2.3.8).

primary

function call

addressing

arithmetic

relational

shift

logical

conditional
table

valof

element

(E1)

E1()
E1(E2,E3,...)

E1lE2
@E1
$E1

E1 * E2
E1 / E2
E1 REM E2
E1 + E2
+ E1

E1 - B2

- E1

E1 = E2
Bl ~= E2
E1 < E2
E1 <= E2
E1l > E2
E1 >= E2

E1l «< E2
E1 >> E2

~ E1
El & E2

E1 | E2

E1 EQV E2

E1 NEQV E2

E1 -> E2, E3
TABLE XO,K1,K2,...

VALOF command

E1, E2 and E3 represent

subscripting
address generaton
indirection

integer remainder

not. equal

left shift by E2(>=0) bits
right shift by E2(>=0) bits

not (complement) E1

and

inclusive or

bitwise equivalence

bitwise not-equivalence
(exclusive or)

The relative binding power of the operators is as follows:

(highest, most binding) function call
! (subscripting)
Q!
*

+ -

relationals

shifts (see section 2.3.4)

&

|

EQV NEQV
->

TABLE
(lowest, least binding) VALOF

Operators of equal binding power associate to the left, For
example,

X+Y -2
is equivalent to
(X+Y) -2

In order that the rule allowing the amission of most semicolons
should work properly, a diadic operator may not be the first symbol on a
line.

The function call will be described with the function definition
in section 2.6.6, and the valof expression will be described with the
regultis command in section 2.5.5.

2.3.1 Addressigg operators

A powerful pair of operators in BCPL are those which allow one
to generate and use addresses. An address may be manipulated using
integer arithmetic and is indistinguishable from an integer until it is
used in a context which requires an address. If the value of a
varigble X is the address of a word in storage, then X+1 is the address
of the next word.

If V is a variable, then associated with V is a single word of
memory, which is called a cell. The contents of the cell ig called the
value of V and the address of the cell is called the eddress of V.

An address may be used by applying the indirection operator (!).
The expression

!E1

has, as value, the contents of the cell whose address is the value of the
expression El. Only the low-order 22 bits of E1 are used (on the 370).

-3 -

An address may be generated by means of the operator @. The
expression

QE1
is only valid if E1 is one of the following:

(1) An identifier (not declared by a manifest declaration),
in which case @V is the address of V.

(2) A gubscripted expression, in which case the value of
QE1lE2 ig E1+E2,

(3) An indirection expression, in which case the value of
@2E1 iB Bl .

Case (1) is self-explanatory. Case (2) is & consequence of the way
vectors are defined in BCPL. A vector of size n is a set of n + 1
contiguous words in memory, numbered O, 1, 2, .es, n. The vector is
identified by the address of word O. If V is an identifier agsociated
with a vector, then the value of V is the address of word O of the
vector.

ey e e

300 w18 o

e b D e -

The value of the expression
VIE1

ig the contents of cell mmber E1 of vector V, as one would expect.
The address of this cell is the value of

V + Bl

hence
e(VIE1) = V + E1

This relation is true whether or not the expression
VIE1

happens to be valid, and whether or not V is an identifier.

Case (3) 18 a consequence of the fact that the operators @ and ! are
inverse.

The interpretation of
{E1
depends on context asg follows:

(1) If it appears as the left-hand side of an assignment
statement, e.g.

IE1 .= E2

E1 is evaluated to produce the address of a cell
and E2 ig stored in it

(2) @€(!E1) = E1 as noted above.

(3) In any other context E1 1is evaluated and the contents
of that value, treated as an address, is taken.

Thus, ! forces one more contents-taking than is normally demanded by the
context.

As a summarising example, consider the four variables A, B, C
and D with initial values @C, @D, 5 and 7, respectively. Then, after
the assigmnment

A =B
their values will be @, @D, 5, 7.
If, instead, the assigmment

A :=1IB
had been executed, then the values would have been 7, @D, 5, 7.
And if the assigrment

1A ;= B
had been executed, then the values would have been €C, @D, @D, T.
Note that

@A ;= B

is not meaningful, since it would eall for changing the address
associated with A, and that association is permanent.

2.3.2 Arithmetic operators

The arithmetic operators *, /, REM, + and - act on 32 bit
gquantities (on the 370) interpreted as Integers.

The operators * and / denote integer multiplication and
division. The operator REM yields the integer remainder after dividing
the left hand operand by the right hand one. If both operands are
positive the result will be positive, it 1s otherwise implementation
dependent.

The operators + and - may be vred in either a monadic or diadic
context and perform the appropriate integer arithmetic operations.

The treatment of arithmetic overflow is undefined.

2¢3.3 Relations

A relational operator campares the integer values of its two
operands and yields a truth-value (TRUE or FAISE) ag result. The
operators are as follows:

= equal

~= not equal

< legs than

<= less than or equal

> greater than

S greater than or equal

The operators = and = make bitwise comparisons of their
cperands and so may be used to determine the equality of values
regardless of the kind of cbjects they represent.

An extended relational expression such as

At <= CH <= 2!
is equivalent to

'A* <= CH & CH<="'2"

2.3.4 Shift operators

In the expression E1 << E2 (E1 >> E2), E2 must evaluate to yield
& non-negative integer. The value is E1, taken as a bit-pattern,
shifted left (or right) by E2 places. Vacated positions are filled
with O bits.

Syntactically, the shift operators have lower precedence on the
left than relational operators but greater precedence on the right.

Thus, for example,

A<«<10=14
is equivalent to

(A<<10) = 14
but

14 = A< 10
is equivalent to

(14=A) << 10

2:3.5 Logical operators

The effect of a logical operator depends on context. There are
two logical contexts: 'truth-value' and 'bit'. The truth-value context
exists whenever the result of the expression will be interpreted
immediately as true or false. In this case each subexpression is
interpreted, from left to right, in truth-value context until the truth
or falsehood of the expression is determined. Then evaluation stops.
Thus, in a truth-value context, the evaluation of

E1 | E2 & ~E3
is as follows.

El1 isg evaluated, and if true the whole expression is true,
otherwise E2 is evaluated, and if falge the whole expression is false,
otherwise E3 is evaluated, and if false the whole expression is true,
otherwise the whole expression is false.

In a 'bit'! context, the operator ~ causes bit-by-bit
complementation of its operand. The other operators combine their
operands bit-by-bit according to the following table:

Operator
Cperands
& | e EQ
] 0 o) 0 0 1
0 1 0 1 1 0
1 0 0 1 1 0
1 1 1 1 0 1

2.3.6 Conditional operator

The expression
E1 -> E2, E3
is evaluated by evaluating E1 in truth-value context. If it ylelds
true, then the expression has value E2, otherwise E3. E2 and E3 are
never both evaluated.
2.3.7 Table
The value of the table expression
TABLE KO, K1, K2, ...
1s the address of a gtatic vector of cells initialised to the values of
KD, K1, K2, ... which must be constant expressions.

2.3.8 Constant expression

A constant expression is any expression involving only numbers,
character constants, names declared by manifest declaration, TRUE, FALSE
and the operators *, /, REM, + and =~ .

2.4 Section brackets

Blocks, compound commends and some other syntactic constructions
use the symbols $(and $) which are called opening and closing section
brackets.

A gection bracket may be tagged with a sequence of letters,
digits and underlines (the same characters as are used in identifiers).
A gection bracket immediately followed by & space or newline is, in
effect, tagged with null.

An opening section bracket can be matched only by an identically
tagged closing bracket. When the compiler finds a closing section
bracket with a non-null tag, if the nearest opening bracket (smallest
currently open section) does not match, that section is closed and the
process repeats until a matching opening section bracket is found.

Thus it is impossible to write sections which are overlapping
(not nested).

2.5 Commands

The complete set of commandg is shown here, with E; E1, E2 and K
denoting expressions, C, C1 and C2 denoting commands, and I and D2
denoting declarations.

routine call E(E1, E2, ...)

E()
assignment <left hand side lisgt> := <expression list>
conditional IF E THEN C

UNLESS E THEN C
TEST E THEN C1 OR C2

repetitive WHILE E DO C
UNTIL E DO C
C REPEAT
C REPEATWHILE B
C REFEATUNTIL E
FOR N = E1 TO E2 BY K DO C
FORN=E1 TOEB2 D0 C

[

regultis RESULTIS E
switchon SWITCHON E INTO <compound command>

trangfer GOIC E
FINISH
RETURN
BREAK
LooP
ENDCASE

compound $(ci; C2; ... $)
block $(Di; D2; c..3 C15 C25 vor §)

Discussion of the routine call is deferred until section 2.6.6 where
function and routine declarations are degeribed.

2,51 Assigggent
The command
E1 = E2

causes the value of E2 to be stored into the cell specified by E1.
51 must have one of the following forms:

(1) The identifier of a varisbie <identifier>
(2) A subscripted expression ER1EL
(3) An indirectibn expression B3

In case (1) the cell belonging to the identifier is updated. Cases
(2) and (3) have been described in section 2.3.1.

A 1list of assignments may be written thus:
E‘H, E2, seay En g F.l, F2, esey Fn

vhere E1 and Fi are expressions. This is equivalent to

E1 = F1
E2 := F2
En := Fn

2.5.2 Conditional commands

IF E THEN C1
UNLESS E THEN C2
TEST E THEN C1 OR C2

Expression E ig evaluated in truth-value context. Command C1 is
executed if E ig true, otherwise the conmand C2 is executed.
2.5.3 For comand

FOR N=E1 T0 E2 BY K DO C

N must be an identifier and K must be a constant expression. This
command will be described by showing an equivalent block.

$(IET N, t = E1, E2

UNTIL N >t DO $(C
$) N:=N+K $)

If the value of K is negative the relation N > t is replaced by N < t.
The declaration

ILET N, t = El1, E2
declares two new cells with identifiers N and t; t being a new
identifier that does not occur in C. Note that the control varigble N

is not available outside the scope of the command.

The command

FOR N=E1 TO E2 DO C

is equivalent to

FOR N=E1 TO E2 BY 1 DO C

w 10 =

2.5.4 Other repetitive commands

WHIIE E DO C
UNTIL E DO C

C REPEAT

C REPEATWHILE E
C REPEATUNTIL E

Command C 1s executed repeatedly until condition E becomes true or false
as implied by the command. If the condition precedes the command
(WHILE, UNTIL) the test will be made before each execution of C. If it
follows the command (REPEATWHILE, REPEATUNTIL), the test will be made
after each execution of C, and so C is executed at least once. In the
case of

C REPEAT

there is no condition and termination must be by a trangfer or resultis
command in C. € will usually be a compound command or block.

Within REPEAT, REPEATWHILE and REPEATUNTIL C is taken as short
as possible. Thus, for example

IF E THEN C REPEAT
is the same ag

IF E THEN $(C REPEAT §)

E .= VAIOF C REPEAT
iz the same as

E := VALOF $(C REPEAT §)

2.5.5 Resultis command and valof expression

The expression
VAIOF C

where C is a command (usually a compound command or block) is called a
valof expression. It is evaluated by executing the commands (and
declarations) in C until a resultis command

RESULTIS E
i1s encountered. The expression E is evaluated, its value becomes the
value of the valof expression and execution of the commends within C

ceases.

A valof expression must contain one or more resultis commands
and one must be executed.

- 11 -

In the case of nested valof expressions, the resultis command
terminates only the inmermost valof expression containing it.

2,5.6 Switchon command

SWITCHON E 1INTO <compound command>
where the compound conmand contains labels of the form

CASE <constant expression>:
or DEFAULT.

The expression E ig first evaluated and, if & case existg which has a
congtant with the same value, then execution is resumed at that label;
otherwise, if there is a default label, then execution is continued from
there, and if there is not, execution is resumed just after the end of
the switchon command.

The switch is implemented as a direct switch, a sequential

search or a binary search depending on the number and range of case
constanta.

2.5.7 Transfer of control

GOTO0 E
FINISH
RETURN
BREAK
Loap
ENDCASE

The command GOTO E interprets the value of E as an address, and
transfers control to that address, see section 2.6.7. The command
FINISH causes an implementation dependent termination of the entire
program. RETURN causes control to return to the caller of a routine.
BREAK causes execution to be resumed at the point just after the
smallest textually enclosing repetitive command. The repetitive
commands are those with the following key words:

UNTIL, WHILE, REPEAT, REPEATWHILE, REPEATUNTIL and FOR
100P cauges execution to be resumed at the point Just before the end of
the body of a repetitive command. For a for command it is the point

where the control varieble ig incremented, and for the other repetitive
commands it is where the condition (if any) is tested.

2.5.8 Compound command

A compound command is a sequence of commands enclogsed in section
brackets.

$(c1;c2; ... $)

The commands C1, C2, ... are executed 1n sequence.

- 12 =

2.5.9 Block

A block 1s a sequence of declarations followed by a sequence of
commands enclosed together in section brackets.

$(D1; D2; ... ; C1; C2; ... §)

The declarations D1, D2, ... and the commands c1, C2, ... are
executed in sequence. The scope of an identifier (i.e. the region of
program where the identifier is known) declared in a declaration ig the
declaration itself (to allow recursive definition), the subgequent
declarations and the commands of the block. Notice that the scope does
not include earlier declarations or extend outside the block.

2,6 Declarations

Every identifier used in a program must be declared explicitly.
There are 10 distinct declarations in BCPL:

global, manifest, static, dynamic, vector, function, routine,
formal parameter, label and for-loop control variable.

The declaration of formal parsmeters 1s covered in sections
2.6.6 and 2.6.7, and the for-loop is described in section 2.5.3.

The scope of identifiers declared at the head of & block is
described in the previous section.

2.6.1 Global

A BCPL program need not be compiled in one piece. The sole
means of communication between separately compiled segmenteg of program
is the global vector. The declarstion

GLOBAL $(Name : constant-expression $)
associates the identifier Name with the specified location in the global
vector., Thus Name identifies a static cell which may be sccessed by

Name or by any other identifier asgsoclated with the same global vector
location.

Global declarations may be combined.
GLOBAL $(N1:K1; N2:K2; ...; Nn:Kn $)
is equivalent to

GLOBAL §(N1:K1)
GLOBAL $(N2:k2 §)

GLOBAL $(Nn:Kn $)

- 13 -

2.6.2 Manifest

rr——

An identifier may be associated with a constant by the
declaration

MANIFEST $(Name = constent-expression $)

An identifier declared by a manifest declaration may only be used in
contexts where & constant would be allowable. It may not, for
ingtance, appear on the left hand side of an assigmment. Like global
declarations, manifest declarations may be combined.

MANIFEST $(N1=K1; N2=K2; ...; Nn=Kn $)
1s equivalent to

MANIFEST $&(Ni=K1 i)
MANIFEST i(N2=K2 $)

MANIFEST $(Nn=Kn §$)

2.,6.3 Static

A variable may be declared and given an initial value by the
declaration

STATIC $(Name = constant-expression $)

The variable that is declared is static, that is it has a cell
permanently allocated to it throughout the execution of the program
(even when control is not dynemically within the scope of the
declaration). Like global declarations, static declarations may e
combined.

STATIC $(N1=Ki; N2=K2; ...; Mn=Kn $)
is equivalent to

STATIC i(N1=K1 3)
STATIC $(N2=k2 §)

STATIC $(DNn=Kn $)

206.’4 D!!}amj.c

The declaration
1ET N1, Na, seey Nn = E1, Ea, srey En
creates dynamic cells and associates with them the identifiers Ni, N2,
«esy M. These cells are initialised to the values of El1, E2, «.., En.

The space reserved for these cells 1s relessed when the block in which
the declaration appears 1s left.

a1,

£.6.5 Vector
The declaration
IET N =VEC K

where K is a constant expression, creates a dynamic vector by
regerving K + 1 cells of contiguous storage in the stack, plus one
cell which is associated with the identifier N. Execution of the
declaration causes the value of N to become the address of the K + 1
cells. The storage allocated is released when the block is left.

2,6.6 Funection and routine

The declaration
LET N(P1, P2, ..., Pn) = E

declares a function named N with m parameters. The parentheses are
required even if m = O. A parameter name has the same syntax as an
identifier, and its scope 1s the expression E. A routine declaration
iz similar to a function declaration except that its body is a command.

LET N(P1, P2, ..., Pm) BE C

If the declaration is within the scope of a global declaration
for Ny then the global cell will be initialised to the entry address of
the function (or routine) before execution of the program. Thus the
function may be accessed from anywhere. Otherwise, a static cell is
created, is associated with the identifier N, and is initialised to the
entry address.

The function or routine is invoked by the call
EO(E1, E2, ..., Em)

where expression EO evaluates to the entry address. In particular,
within the scope of the identifier N, the function or routine may be
invoked by the call

N(E1, E2, ..., Em)

rrovided the value of N has not been changed during the execution of the
Vrogram .

Each value passed as a parameter is copied into a newly created
¢all which is then associated with the corresponding parameter name.
Tue cells are consecutive in store and so the argument list behaves like
an initialised dynamic vector. The space allocated for the argument
1list is released when evaluation of the call is complete. Notice that
argunents are always passed by value; however, the value passed may, of
course, be an asddress.

- 15 -

A function call is a call in the context of an expression. It a
function is being called, the result is the value of E, and if & routine
is being calledX the resultis ig undefined. A routine call ig a call
in the context of a command and may be used to call either a function or
a routine. A routine call has no result.

No dynamic (or vector or formal) variable that is declared
outside the function may be referred to from within E.

2,6,7 Label

A label may be declared by
Name s

A label declaration may precede any command or label declaration, but
may not precede any other form of declaration. Exactly as in the case
of a function or routine, a label declaration creates a static cell if
it is not within the seope of a global declaration of the same
identifier. The local or global cell is initialised before execution
with the address of the point in the program labelled, so that the
command

GOTO Name
has the expected effect.

The scope of a label depends on its context. It is the
gmallest of the following regions of program:

(1) the command sequence of the smallest textually
encloging block,

(2) the body of the smallest textually enclosing valof
expression or routine,

(3) the body of the smsllest enclosing for command.

Labels may be assigned to variables and passed as parameters.
It is, in general, not useful for them to be declared global, but they
can be asgigned to global variables.

Using a goto command to transfer to a label which is outside the
current function or routine will produce undefined (chaotic) results.
Such transfers can only be performed using the library functions LEVEL
and IONGJUMP which are described in section 2.8.2.

- 16 =

2,6.8 Simultaneous declaration

Any declarstion of the form
IET ...

may be followed by one or more declarstions of the form
AND 060

where any construct which may follow LET may follow AND. Ag far as
scope 1s concerned, such a collection of declarations i1z treated like s
single declaration. This makes is possible, for example, for two
routines to know each other without recourse to the global vector.

2.7 Migcellaneous features
2,71 ggg

It 1s possible to include a file in the source text of a program
using a get directive of the form:

GET r"string"
On the 370, text of the get directive is replaced by the text of the

file whose DDNAME ig string. A get directive should appear on & line
by itself.

2.7.2 Comments and spaces

The character pair // denote the beginning of a comment. All
characters from (and including) // up to but not including the character
‘newline’ will be ignored by the campiler.

Blank lines are also ignored.
Space and tab characters may be inserted freely except inside g

basic symbol, but Space or tab characters are required to separate
identifiers or system words from adjoining identifiers or system words.

2.7.3 Optional symbols and synonyms

The reserved words DO and THEN are synonyms in BCPL. Most
implementations of BCPL algo allow other synonyms and a list of the
synonyms for the 370 implementation can be found in Appendix A.

I L 2R

In order to make BCPL programs essier to read and to write, the
compiler allows the syntax rules to be relaxed in certain cases. The
word DO (or THEN) may be omitted whenever it is immediately followed by
the keyword of & command (e.g. RESULTIS). Any semicolon occuring as
the last symbol of a line may be omitted. As an example, the following
two programs are equlvalent:

IF A=0 DD GOTO X; IF A=0 GOTOX
A=A - 1 A .= A -1

2.8 The run-time library

This section summarises the library functions and routines that
are available on the 370 implementation of BCPL.

2.8.1 Input-Output routines

The input/output facilities of BCPL are quite primitive and
gimple;, and are always invoked by means of function or routine calls.

FINDINPUT(ddname) is a function taking a string for the ddnsme of a
data-set as argument and returning a stream-pointer to be used by the
input routines. If the data-set is not already open for reading it is
opened. If the data-set does not exist, the result is zero.

SELECTINPUT(stream) is a routine which selects the specified input
stream for future reading.

RDCH() is a function whose result is the next character from the
currently selected input stream. If the stream is exhausted, it ylelds
ENDSTREAMCH(=-1).

REWIND() repositions the currently selected input stream to point to the
first record.

ENDREAD() closes the currently selected input stream.

FINDOUTPUT(ddname) 1s e function taking a string for the ddnsme of a
data-set ag argument and returning a stream-pointer to be used by the
output routines. If the data-set is not already opened for writing it
is opened. If the data-set does not exist, the result is zero.

SELECTOUTPUT(stream) is a routine which selects the specified output
stream for future writing.

WRCH(CH) will write the character CH to the currently selected output
stream.

ENDWRITE() closes the currently selected output stream.

ENDTOINPUT() closes the currently selected output stream and reopens it
for reading.

INPUT() is a function that will return with the currently selected input
stream. ‘

OUTPUT() is a function that will return with the currently selected
output stream.

SETTRIM(SW) sets the control that specifies the treatment of trailing
blanks in records read from the current input stream. If SW ig true
trailing blanks will be skipped, if SW is false they will not.

READREC(V) is a function that will read a record from the current input
stream into the vector V packing four characters per word. The result
is the number of characters read, or -1 if the stream is exhausted.

WRITEREC(V,N) will write N characters from the vector V to the current
output stream followed by a newline. The characters in V are packed
four per word.

WRITESEG(V,N) will write N characters from the vector V to the current
output stream. The characters in V are packed four per word.

2.8.,2 Other useful subroutines

PACKSTRING(V,S) is a function which packs the characters V!1 to VIN
into S, where N = VIO & 255, The result is the subscript of the
highest element of S used (i.e. N/4 on the 370).

UNPACKSTRING(S,V) is a routine to unpack characters from the string S
into V!1 to VIN when N is the length of the string, and set V!0 = N,

WRITES(S) writes the string S to the current output stream.

NEWLINE() writes a newline to the current output stresm.

WRITED(N,D) writes the integer N to the current output gtream right
Justified in a field of width D places. If D is too small the number
is written correctly using as many characters as necessary.

WRITEN(N) 1s equivalent to WRITED(N,0).

WRITEOCT(N,D) writes the D least significant octal digits of N to the
current output stream.

WRITEHEX(N,D) writes the D least significant hexadecimal digits of N to
the current output stream.

WRITEF(FORMAT,A,B, ...) is a routine to output A,B, ... to the
current output stream according to FORMAT. The FORMAT string is copied
to the stream until the end 1s reached or the warning character 's' is
encountered. The character following the 's%' defines the format of the
next value to be printed as follows:

%% print '%'

LS print as a string

L. print as a character

N print as a integer (minimum width)

$In print as a integer width n
¥0n print as an octal number width n
Xn print es & hexadecimal number width n

The routine takes the format and a maximum of 11 additional arguments.

MAPSTORE() prints a map of the program area including function and
routine names, and the values of all global variables used. '

BACKTRACE(CODE,ADDR) prints an error message using CODE and ADDR
followed by a summary of the dynamic stack giving the names of all
functions and routines currently active and the values of the first few
local variables of each. If CODE = O the error message will be
disabled.,

ABORT(CODE,ADDR) is called automatically by the system after most
faults. It calls BACKTRACE and MAPSTORE in order to provide the user
with some postmortem information.

STOP(N) will terminate the jJob step, returning a completion code N.

IEVEL() is a function whose result is the current value of the run-time
stack pointer for use with LONGJUMP., The stack pointer changes only
when a function or routine is entered or left.

LONGJUMP(P,L) will cause & non-local jump to the label L at the
activation level given by the stack pointer P.

TIME() is a function whose result is the camputation time used in units
of 26 micro-seconds.

APTOVEC(F,N) is a function which will apply F to two erguments V and N
where V ig a vector of size N. APTOVEC could (illegelly) be defined in
BCPL as follows:

LET AVTOVEC(F,N) = VALOF
IET V = VEC N
RESULTIS F(V,N) $)

2.8.3 Library varisbles

STACKBASE points to the base of the runtime stack.
STACKEND points to the end of the runtime stack.

PARMS holds a string representing the PARM field for the current Jjob
step. ‘

TERMINATOR holds the character following the last digit of the most
recent nmumber read in by READN,

ENDSTREAMCH is a manifest constant (=-1) which is produced by RDCH when
the input stream is exhausted.

r.Y. 1

3. USING BCPL ON THE 370

Files relating to the BCPL system are catalogued in the file
directory BCPLIB. Thege include the compiler itself BCPLIB.SYS3, the
library modules which are held in a partitioned data set BCPLIB.LIB and
the standard header file BCPLIB.LIBHDR which contains global
declarations for all the library routines. There is, also, an -
information document BCPLIB.INFO which containg recent news about the
BCPL system.

There are four catalogued procedures BCPLCLG, BCPLCL, BCPIC and
BCPLLG to simplify the use of the campiler.

3-1 Compilation

The BCPL campiler is usually invoked by means of one of the
catalogued procedures. The following complete job illustrates the use
of BCPICLG. It will compile and run the routine START,

m L N]

LIMSTORE 180K

// EXEC BCPICLG
//BCPL.SYSIN DD DATA

GET "LIBHDR"

LET START(PARM) BE $(1

L

$)1
/*

The compiler runs as one job step and currently requires a
region size of 180K, hence the need for LIMSTORE 180K, The example
given above will cause the program to be compiled, link-edited and run
with the standard library. The catalogued procedure BCPICLG is as
follows:

//BCPLCLG PROC TRKS=*19,3',PRINTC="SYSOUT=A',REGC=180K,
// MINC=,SECC=5,CONDC=, PARMC="'L12000/K!,
// LIBC="BCPLIB.SYS3',LIBHDR=*BCPLIB.LIBHDR',
// SYSLIBL='BCPLIB.LIB',
// PRINTL="SYSOUT=A',REGL=96K,MINL=,SECL=5,
// CONDL='4,LT,BCPL!,
// LISTI....LIST MAPL- NUMAP XREFL=NOXREF, LETL-LET,
// ATTL=, CAL—CALL DCBL-DCES BLKL_ho%
/! SIZEL-—'(999999,8K)' NAMEL-—'&GDSET(BCPLGD)'
// DISPL=*(NEW, PASS),SPACE (TRK, (8, 3,1),RISE)'
17, PARMG="1 , PRINTG- | SYSOUT=A , REGG=1 20K, MING=1139,
% SECG=0 comac-'(h LT,BCPL), (u LT LKED)'
¥*
//BCPL EXEC PGM=BCPL, REGION=®C , PARM=" sPARMC! ,
// TIME= (aMINC &SECC),CDND—(&CDNDC)
//STEPLIB DD DISP=SHR,DSN=&LIBC
//SYSPRINT DD &PRINTC
//LIBHDR DD DISP=SHR,DSN=3LIBHDR
//SYSGO DD DSN=&LOADSET,DISP=(MOD,PASS),UNIT=DISC,
// SPACE=(TRK, (&TRKS),RLSE),
/] DCB-(RECFM-FB LRECL_—SO BLKSIZE=3120)
//IKED EXEC PGM=IEWL,REGION=2REGL,
// PAIM—'SIZE—&SIZEL,&LLSTL &MAPL, & XREFL, e XLETL, & ATTL, CAL, 3 DCBL!,
// COND=(&CONDL), TIME= (&MINL &SECL)
//SYSLIB DD DSN=&SYSLIBL,DISP=SHR
//SYSIMOD DD DSN=&NAME:L,DISP:&DISPL,DCB=BLKSIZE=&BLKL,UNIT=DISC
//SYSPRINT DD &PRINTL
//SYSUT1 DD UNIT=DISC,SPACE=(TRK, (&TRKS)),SEP=SYSIM(D,
// DSN=.SYSUT1
//SYSLIN DD DSN=&LOADSET,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
/]GO EXEC PGM=*,LKED,SYSIM(D,COND=(sCONDG) ,REGION=¢REGG,
// PARM=*&PARMG! , TIME=(&MING,&SECG)
//SYSPRINT DD &PRINTG

3e11

Library declarations

The directive

GET

will ingert the standard library declarations from the data-set whose
DDNAME ig LIBHDR.

"LIBHDR "

The default setting of this data-get is

BCPLIB.LIBHDR, The items declared in this file are shown below.
convention library varisbles are given global numbers in the range 1
to 99 and so users should avoid allocating globals in this region for
thelr own purposes.

By

- O .

GLOBAL

$(

$)

START- 1

ABORT: 3
BACKTRACE: 4
SELECTINPUT. 11
SELECTQOUTPUT : 12
RDCH:13

WRCH:14
INPUT: 16
OUTPUT: 17
SETTRIM:20
READREC : 23
WRITEREC:24
WRITESEG:25
TIME.28

STOP: 30
1EVEL. 31
LONGJUMP: 32
REWIND: 35
APTOVEC : 40
FINDOUTPUT: 41
FINDINPUT: k2
ENDREAD s 46
ENDWRITE: 47
ENDTOINPUT: 51
STACKBASE : 54
STACKEND: 55
WRITES : 60
WRITEN: 62
NEWLINE: 63
PACKSTRING:66
UNPACKSTRING:67
WRITED: 68
READN:'70
TERMINATOR. 71
WRITEHEX:75
WRITEF: 76
WRITEOCT. 77
MAPSTORE: 78

MANTFEST

)

ENDSTREAMCH= -1

// The main routine

// Calls BACKTRACE and MAPSTORE
// Summarise the run-time stack
// Select input stream

// Select output stream

// Read a characte

// Write a character

// Find current input

// Find current output

// Set trailing blank control

// Read a record

// Write record

// Write part-record

// Find computation time

// Terminate job step

// Find activation pointer

// Make non-local Jjump

// Rewind input stream

// Apply function to dynamic vector
// Find specified output stream
// Find specified input stream
// Close input streem

// Close output stream

// Close and reposition output stream
// Base of stack pointer

// End of stack pointer

// Write a string

// Write a number (minimum width)
// Write a newline

// Pack characters

// Unpack characters

// Write a number

// Read a number

// Terminator character of READN
// Write a hexadecimal number

// Write with format

// Write an octal number

// Map the store

// End of stream character

_ Y _

3.1.2 Diagnostics

The BCPL campiler has three passes: parse, translate and
code-generate. There are correspondingly three kinds of error
diagnostic.

A parse diagnostic occurs when a relatively simple syntactic
error is detected during the first pass of compilation. The message
includes a portion of the source program to give the context and a brief
description of the probable error. The compiler usually skips to the’
end of the line before continuing the parse. Later error messages
should be viewed with suspicion since the automatic recovery is often
not very successful.

Tranglation phase disgnostics occur in the second pass of
compilation and report errors such as the use of an undeclared
identifier. Each error is briefly described and a representation of
the relevant portion of the parse tree is printed.

Code-generation diagnostics are rare and usuaslly result from
table overflows or campiler errors.

3.1.3 Compilation options

The compilation of a program cen be controlled by various
compilation options pagsed to the compiler by the PARM field of the EXEC
card that invoked the compiler. The options for the code-generator
are separated from those for the first phase of the compiler by a slash.
Most options are specified by single letters and scme are primarily
debugging aids for the implementer of the compiler.

The first phase options are as follows:

In Set the size of work-space area used during compilation.
The best value of n is usually between 6000 and 12000,

N Digable the GET directive.
s Print a 1list of all identifiers occurring in the source program.
T Print the parse tree of the source program.
o Print the intermediate object code form of the program.
The code generator options are as follows:
K Compile instructions with each function and routine to count

the number of times they are executed. The counts can be
printed using MAPSTORE.

- 25 -

P Compile instructions after labels and conditional jumps to
accumulate execution counts. Thege counts can be printed
using MAPSTORE and allow one to make a detailed analysis of
the execution of the program.

L Output an assembly listing of the compiled program.
N Do not generate an object module for the program.

The default getting of the PARM field when using BCPLCIG ig
'L12000/K?*.

3.2 Execution
32,1 Loading

Each compiled segment of a BCPL program has an external
reference to BCPIMAIN which is the entry point of the standard machine
code library and this, in turn, has a reference to BLIB which is the
portion of the standard library written in BCPL. Thus, when the
campiled segments are link-edited together, the library modules are
autcmatically incorporated. The standard library modules are held in
BCPLIB,.LIB,

When the complete program is executed, the machine code library
initialises the run-time system and obtains space for the global vector
and stack. The globals are initialigsed to their appropriate values and
then control is passed to the BCPL program by calling the routine START
(global 1) which must have been defined by the programmer. START is
rassed a string representing the PARM field of the job control card that
caused the program to be executed.

The size of the global vector is the smallest multiple of 100
words large enough to accommodate the highest global mmber actually
used in any segment of the loaded program. The size of the run-time
stack depends on the space available in the region in which the program
is run. Some space is retained for input/output buffers and system
use. The limits of the stack are held in STACKBASE and STACKEND.

When START ig called, the initial output selection is to

SYSPRINT, if it exists; and the initial input selection is from SYSIN,
if it exists.

3.2.2 Execution faults

In the event of an execution fault guch as division by zero or a
protection exception the routine ABORT is called. This will print the
fault number and the program address when the fault was detected,
followed by a summary of the runtime stack (printed out by BACKTRACE)
and a map of the program store and globals (printed out by MAPSTCRE).
This information is output to SYSPRINT which should therefore always be
provided.

~

3.2.3 A complete job

The following is an example of a complete BCPL job to compile
and execute a BCPL program using the catalogued procedure BCPLCLG.

JUB ...
LIMSTORE 180K

// EXEC BCPILCLG
//BCPL.SYSIN DD DATA

// THIS IS A DEMOSTRATION BCPL PROGRAM

GET "LIBHDR"
// THIS INSERTS THE STANDARD GLOBAL DECLARATION

LET START(PARM) BE $(1 // START(GLOBAL 1) IS THE MAIN ROUTINE
GLOBAL $(TREE:100; TREEP;101; CH:102 §$)
STATIC $(COUNT=0; MIN=O; MAX=0 §$)

MANIFEST $(// THE FOLLOWING NAMES WILL
// BE USED AS SELECTORS
%‘)&IFO 3 LEFT=1; RIGHT=2

// THE FUNCTIONS PUT, LIST AND SUM(DEFINED BELOW)

// OPERATE ON A TREE STRUCTURE WHOSE ROOT IS HELD

// IN TREE, IF T IS A BRANCH IN THIS TREE THEN

// EITHER T=0

// OR T POINTS TO A TREE NCODE AND VAL!T IS AN

// INTEGER(K SAY), LEFT!T IS A BRANCH CONTAINING

// NUMBERS <K AND RIGHT!T IS A BRANCH CONTAINING

// NUMBERS >=K.

LET PUT(K, P) BE // THE ROUTINE PUT WILL ADD A NODE TO THE
// TREE WHOSE ROOT IS POINTED TO BY P.

$(P UNTIL !P=0 DO
$(IET T = tP
P := KVALI!T -> @QLEFTIT, @RIGHMIT §)

VALITREEP, LEFTITREEP, RIGHTSTREEP := K, O, O
!P ;= TREEP
TREEP ;= TREEP + 3 $)P

AND LIST(T) BE // LIST THE NUMBERS HELD IN THE TREE T
UNLESS T=0 DO $(LIST(LEFTIT)
IF COUNT REM 10 = O DO NEWLINE()
COUNT := COUNT + 1
WRITEF("s 16 ", VALIT)
LIST(RIGHTIT) §)

AND SUM(T) = T=0 -> O,
VAL!TMIN -> SUM(RIGHT!T),
VAL!TSMAX -> SUM(LEFT!T),
VAL!T+SUM(LEFT!T)+SUM(RIGHT!T)

IET V = VEC 600
TREE, TREEP ;= O, V

NXT: CH := RDCH() // THIS IS A CONVENIENT WAY
// TO ORGANISE A TEST PROGRAM
SW: SWITCHON CH INTO

$(s CASE 'Q': CASE ENDSTREAMCH:
WRITES("#NEND OF TEST*N")
FINISH

CASE 'P':; PUT(READN(), @TREE) // PUT A NUMBER
CH ;= TERMINATOR // IN THE TREE
GOTO SW

CASE 'L': NEWLINE() // LIST THE NUMBERS IN THE TREE
COUNT := O
LIST(TREE)
NEWLINE()
GOTO NXT

CASE 'S'; MIN ;= READN()
MAX ;= READN()
WRITEF("#NSUM OF NUMBERS BETWEEN sN AND N IS aN*N",
MIN, MAX, SUM(TREE))
CH := TERMINATOR
GOTO NXT

N

CASE 'M': MAPSTORE(); GOTO NXT // PRINT A STORE MAP
CASE 'Z': TREE := O; WRITES("*NTREE CLEARED*N"); GOTO NXT
CASE *#3'; CASE '*N': GOTO NXT // IGNORE SPACE AND NEWLINE
DEFAULT: WRITEF("*NBAD CH '$C'#N", CH); GOTO MXT $)s

$)1 // END OF PROGRAM

;;GD.SYSIN DD *

P24 P13 P96 P46 P-12 PO PL5
L 810 50

T

When this Jjob is run, its GO step will output the following:
-12 0 13 24 45 46 96

SUM OF NUMBERS BETWEEN 10 AND 50 IS 128

END OF TEST

Appendix A: Basic symbols and synonyms

The following list of words and symbols are treated as atoms by
the syntax analyser. The name of the symbol or its standard
representation on the 370 is given in the first column, and examples or
synonymg are given in the second. ;

Basic symbol Examples and synonyms
identifier A H1 PQRST TAX RATE
number 126 7249 #3771 T
string constant "A" "*NTEST"
character constant 'X' ')t taNr tee
TRUE

FALSE

(

)

@ Lv

H RV

*

/

REM

+

= EQ

~= NE

<= IE

>= GE

< IS

> GR

<< LSHIFT

>> RSHIFT

~ NOT

& / \ LOGAND

I \/ LOGCR
EQV

NEQV

->

2

TABLE

VALOF

3

3 e &

) JAB $)
VEC

BE

IET

AND

BREAK -

LOOP

ENDCASE

RETURN

FINISH

GOTO

RESULTIS

| SWITCHDN

INTO

REPEAT

REPEATUNTIL
REPEATWHILE

Do Co THEN
UNTIL

WHILE

FOR

TO

BY

TEST

THEN Do
OR ELSE
IF

UNLESS

CASE

DEFAULT

Appendix B: BNF of BCPL

This appendix presents the Backus Naur Form of the syntax of
BCPL. The whole syntax is given, with the following exceptions:

1. Comments are not included, and the space character is not
represented even where required.

2. The section bracket tagging rule is not included, since it
is impossible to represent in BNF,

3e The graphic escape sequences allowable in string and
character constants are not represented.

L, No account is made of the rules which allow dropping of
semicolon and DO in most ceases. It seemed that these
rules unnecegsarily complicate the BNF gyntax yet are easy
to understand by other means.

5 BCPL has several synonymous system words and operators:
for example, DO and THEN. Only & standard form of these
symbols 1s shown in the syntax; a list of synonyms can
be found in Appendix A.

6. Certain constructions can be used only in specific contexts.
Not all these restrictions are included: for exemple,
CASE and DEFAULT can only be used in switches, and RESULTIS
only in VALOF expressions. Finally, there is the necessity
of declaring all identifiers that are used in a program.

Te There is a syntactic smbiguity relating to <repeated command>
which is resolved in section 2.5.4.

The brackets [] imply arbitrary repetition of the categories enclosed.

1. Identifiers, Strings, Numbers

etter> ::= A| B | .. | Z

<octal digit> ::= O | 1| .. | 7

<digit> ::= O | 1| oo | 9

<string constant> ::= "<255 or fewer characters>"
<character constant> ::= '<one character>'

<octal number> ::= # <octal digit> [<octal digit>]
<number> ::= <octal number> | <digit> [<digit>]

<identifier> ::= <letter> [<letter> | <digit> | _]

- e

2. Operators

3. E:_(_Eressions

<element> ::= <character constant> | <string congtant> |
<number> | <identifier> | TRUE | FALSE

<primary E> ::= <primary E> (<expression list>) |
<primary E> (xﬁ) '
(<expression>) | <element>

<vector E> ::= <vector E> ! <primary E> | <primary E>

<address E> ::= <address op> <address E> | <vector E>

<mult E> ::= <mult E> <mult op> <address E> | <address E>
<add E> ::= <add E> <add op> <mult E> |
<add op> <mult E> |
<mult E>
<rel E> ::= <add E> [<rel op> <add E>]
<ghift E> ::= <ghift E> <shift op> <add E> | <rel E>
<not E> ::= ~ <ghift E> | <ghift E>
<and E> ::= <not E> [<and op> <not B>]
<or E> ::= <and E> [<or op> <and E>]
<eqv E> ::= <or E> [<eqv op> <or E>]

<conditional E> ::= <eqv E> -> <conditional E> , <conditionel E> |
<eqv E>

<expression> ::= <conditional E> |
TABLE <constant expression> [, <constant expression>] |
VAIOF <command>

L, Constant Expressions

<C element> ::= <character constant> | <number> I <identifier> |
TRUE | FALSE | (<const expression>) -

<C mult E> ::= <C mult E> <mult op> <C element> | <C element>
<constant expression> ::= <constant expression> <add op> <C mult E> |
<add op> <C mult E> | <C mult E>

Se Lists of Expressions and Identifiers

<expression list> ::= <expression> [, <expression>]

<name 1list> ::= <name> [, <name>]

6. Declarations

<manifest item> ::

<identifier> = <constant expression>

<manifest list> ::

<manifest item> [; <manifest item>]
<manifest declaration> ::= MANIFEST $(<manifest list> $)
<gtatic declaration> ::= STATIC $(<wanifest 1list> §)

<global item> ::= <identifier> : <constant expression>

<global 1list> ::= <global item> [; <global item>]

<global declaration> ::= GLOBAL $(<global list> §)

<simple definition> ::= <name ligt> = <expression list>

<vector definition> ::= <identifier> = VEC <constant expression>

<function definition> ::= <identifier> (<nasme 1list>) = <expression> |
: <identifier> () = <expression>

<routine definition> ::= <identifier> (<name list>) BE <command> |
<identifier> () BE <command>

<definition> ::= <simple definition> [<vector definition> |
<function definition> | <routine definition>

<simultaneous declaration> ::= ILET <definition> [AND <definition>]

<declaration> ::= <simultaneous declaration> |
<menifest declaration> |
<gtatic declaration> |
<global declaration>

T Left hand side Expressions

<LHSE> ::= <identifier> | <vector E> ! <primary E> |
! <primary E>

<left hand side 1list> ::= <LHSE> [, <LHSE>]

8. Unlabelled Commands

<assignment> ::= <left hand side list> := <expression ligt>
<simple command> ::= BREAK | LOOP | ENDCASE | RETURN | FINISH
<goto command> ::= GOTO <expression>

<routine command> ::= <primary E> (<expression list>) l
<primary E> (

<resultis command> ::= RESULTIS <expression>

<switchon command> ::

It

SWITCHON <expression> INTO <compound command>

<repeatable camand> ::= <assignment> | <simple command> |
<goto command> | <routine commend> |
<resultis command> | <repeated command>
<switchon command> | <compound command>
<block>

<repeated command> ::= <repeatable command> REPEAT |
<repeatable command> REPEATUNTIL <expression> |
<repeateble command> REPEATWHILE <expression>
<until command> ::= UNTIL <expression> DO <commend>
<while command> ::= WHILE <expression> DO <command>
<for command> ::= FOR <identifier> = <expression> TO <expression>
BY <constant expression> DO <command> l
FOR <identifier> = <expression> TO <expression>
DO <command>

<repetitive command> ::= <repeated command> | <until command> |
<while command> | <for command>

<test command> ::= TEST <expression> THEN <command> OR <command>

<if command> ::= IF <expression> THEN <command>

<unless command> ::= UNLESS <expression> THEN <command>

<unlabelled command> ::= <repeatable command> | <repetitive command>

<test command> | <if command> |
<unless command>

—

9. Lgbelled Commands

<label prefix> ::= <identifier> :

<case prefix> ::= CASE <constant expression> :

<default prefix> ;= DEFAULT

<prefix> ::= <label prefix> | <cage prefix> | <default prefix>
<command> ::= <unlsbelled command> |

<prefix> <command> l
<prefix>

10. Blocks and Comlaound Commands

<commend list> ::= <command> [; <command>]
<declaration part> ::= <declaration> [; <declaration>]
<block> ::= $(<declaration part> ; <command list> §)
<compound command> ::= $(<command 1ist> §$)

<program> ::= <declaration part>

APPENDIX C. The EBCDIC character set

The following teble gives the decimal values and graphics of
the characters available on the 370 implementation of BCPL.

0 1 2 3 N 5 HT 6 7
8 9 10 11 12 NP 13 14 15
16 17 18 19 20 21 NL 22 BS 23
ok 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
Lo k1 L2 43 Ll us 46 47
L8 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

64 sSP 65 66 [67 1] 68 69 70 4
72 73 7h 5. T6< 77(T+ 79|
80 & 81 82 83 84 85 86 87
88 89 90 92 * 93) ok ;
9% - 97/ 98\ 99 100 A 101 + 102
104 105 106 107 , 108 & 109 M0 > 1112
112 113 1L 115 116 117 118 119

O
ry
<%
4
Y
O
w

120 121 122 : 123 # 124 @ 125 126 = 127"
128 129a 130b 131 ¢ 132a 133e 134 f 135 ¢
136 h 1371 138 139 140 11 142 143
14y W5y 6k 71 1W8m 19 n 1500 151 p
152 q 153 r 15k 155 156 157 158 159

160 161 162 g 163t 164y 165v 166w 167 x
168y 169 2z 170 171 172 173 174 175
176 177 178 179 180 181 182 183
184 185 186 187 188 189 190 191
192 193 A 194 B 195C 196D 197E 198 F 199 G
200 H 201 I 202 203 204 205 206 207
208 209 J 210K 211 L 212M 213N 2140 215P
216 Q@ 21T R 218 219 220 221 220 223
224 225 2268 227TT 228U 229V 230 W 231 X
232 Y 2332 234 235 236 237 238 239
2Ll0 0 211 2422 2433 2hhh 2455 246 6 247 7
248 8 2499 250 251 252 253 254 255

vhere HI' is horizontal tab
NL 1is newline
NP 18 newpage
BS 1s Dbackspace
SP 1is space

and the end-of-gtream character ENDSTREAMCH is minus one.

Appendix D: Common extensions

The extensions given here are available on the 370 version of
BCPL and, although they are not in the standard language, they should be
congidered by other implementers of BCPL planning to extend the
language. This appendix is provided in the hope that it will reduce
needless incampatibilities between different implementations.

It must be gtressed that these extensions should only be used
where asbsolutely necessary, and then as sparingly as possible. They
tend to decrease the efficiency and the understandability of the program
and often indicate bad programming style.

On machines with suitable wordlengths, floating-point arithmetic
and field selection are appropriate extensions. These are described in
the next two sections The last section describes other miscellaneous
extensions,

Floating-point arithmetic

A floating-point constant may have one of the following forms:
i.JEk
1
iEk

where 1 and J are unsigned integers and k is a (possibly signed)
integer, The value is represented on the 370 as a 32 bit floating~
point number.

The arithmetic and relational operators for floating-point
quantities are as follows:

F* #/
#e e
= = <= o= <

They have the same precedence as the corresponding integer operators.
There are, also, two monadic operators FIX and FLOAT for conversions
between integers and floating-point numbers. They have the same
precedence as @.

Field selectors

Field selectors allow quantities smaller than a whole word to be
accegsed with reasongble convenience and efficiency. A gelector is

~ applied to a pointer using the operator OF(or ::). It has three

camponents: the size, the shift and the offsget. The size is the number
of bits in the field, the shift is the number of bits between the
right-mogt bit of the field and the right hand end of the word
containing it, and the offaset is the position of the word containing the
field relative to the pointer.

The precedence of OF 1s the same as that of the subscription
operator(!), but its left operand (the selector) must be a constant
expression. A convenient way to specify a selector is to use the
operator SLOT whose syntax is as follows:

<constant expression> ::= SLCT <size>:<shift>:<offset> |
SICT <size>:<shift> |
SICT <size>

where <size>, <ghift> and <offset> are constant expressions. Unless
explicitly specified the shift and offset are agssumed to be zero by
default. A gize of zero indicates that the field extends to the left
hand end of the word.

Selectors are best defined using manifest declarations.

A gelector application may be used on the left hand side of an
assigmment and in any other context where an expression may be used,
except as the operand of @. In the assigmment

FOFP :=E

the appropriate mumber of bits from the right hand end of E are assigned
to the specified field. When

FOFP

is evaluated in any other context, the specified field is extracted and
shifted so as to appear at the right hand end of the result.

On the 370, fields corresponding to half-words and bytes are
treated efficiently.

Migcellaneous extensions

a) Identifiers

Capital and small letters, dots and underlines may be used in
identifiers and section bracket tags. System words must still be spelt
in capitais.

b) Constants

Binary, octal and hexadecimal constants may be written using the
warning sequences #B, #0(or Just #) and #X. They denote right
Justified values.

In a string or character constant *C denotes carriage return,
and the sequence

* <pewline> [<gpace> | <tab>] *

is skipped. Thus, the string
"THIS STRING *
CONTAINS NEWLINES
* AND SPACES"

1s equivalent to

"THIS STRING CONTAINS NEWLINES AND SPACES"

The character ' ?' may be used anywhere in an expression where no
gpecific value is required, as in

IET 0P, A =2, ?
c) Comments
The sequence Il»(like //) introduces a comment which extends to the end
of the 1ine. The sequences |* ... *| and /* ... */ are bracketed
comments (possibly containing newlines).

a) Operators

The monadic operators ABS and #ABS obtain the absolute value of
an integer or floating=-point number. They have the same precedence as
Q.

The operator <> has & similar meaning to semicolon but is
syntactically more binding than DO, OR, REPEAT etc. For example

IFEDDClI < C2
is equivalent to
IF E DO $(C1 ; C2 §)

The operator « is & synonym for the assignment operator :=, and
both may be preceded by one of the following diadic operators:

* | RKEM #* #/
+ - e
&
|
EQV NEQV
The meaning of
E1 <op>;= E2
is the same as

El := E1 <op> E2

e) Segment headings

A segment of BCPL program may start with a directive of the
following form:

SECTION "name"

where name is a module name acceptable to the linkage-editor. It
defines the section name given to the object module corresponding to the
segment of program.

This directive may be followed by one or more directives of the
form:

NEEDS " nameu

where name is a module name acceptable to the linkage-editor. It
causes an external reference to be set up in the object module, with the
result that the gpecified object will be retrieved automatically by the
linkaege-editor.

