MEMO TO: F.J. Corbatd

R.C. Daley
FROM: R.M. Graham ﬁzLéfé/
DATE: January 22, 1969
SUBJ: Transforming EPLBSA into a Multics Maintainable Program

Outlined herein is a plan for transforming the assembler (EPLBSA), currently
a collection of FORTRAN and GMAP procedures, into a collection of EPL and
EPLBSA procedures which can be maintained within the Multies system,

The reason this is a problem is that the FORTRAN and GMAP procedures are
bound (via gecos seg) into a single segment and they know that both

common storage and all other pmw cedures are in the same segment. The

following plan permits gradual replacement, a procedure or two at a time,
of the individual procedures in the assmebler.

1. The general idea is to treat all common storage as based storage.

2. A small FORTRAN procedure is written which is called before anything
else is executed inside the assembler. This procedure will call an
EPLBSA procedure once for each common variable. The call has one
argument which is the location of the common variable. The EPLBSA

procedure builds up a list of pointers to the common variables in
the assembler's common area.

3. This list of pointers is stored in a single segment (say with name C),
Each pointer in the segment C is given an external symbolic name
identical to the name of the common variable to which it points,
Each routine converted to EPL or EPLBSA then refers to common by
using these pointers and based storage. These based storage
references can be turned into direct external segment references
after the entire assembler is converted. When a module is converted
a reference to a common variable, say X, will be written as C X,
where Y is a based variable with the appropriate attributes for the
common variable named X in the assembler. When the assembler is
totally converted the editor can be used to sweep through and change
all occurences of C$X™Y to C$X. The declaration of CS8X is then

changed from pointer to the attributes of Y and the declaration for
Y is deleted.

4, The remaining problem seems to center around the fact that call-outs
from a gecos seg produced procedure segment may have only one argument,
Most of the Toutines in the assembler have more than one argument; hence,
some minor revisions will have to be made in the FORTRAN and GMAP
routines to make calls to any converted procedure have one argument,
This single argument should be a location in common where the real
arguments are found in sequence. The converted procedure which is
being called should have a short section of code in the beginning
which generates pointers to these arguments., The arguments are

“2a

referred to in the body of the procedure using these pointers and
based storage. Later, when the assembler is all converted, these
based references to the procedure's arguments can be easily
converted to dummy variables by use of the editor.

