MEMO TO: F.J. Corbatd
R.C. Daley

Do’
FROM: R.M. Graham W uM

SUBJ: Revision of EPLBSA

DATE: January 22, 1969

Following is a list of suggested revisions to EPLBSA which will improve
its performance. The gain in each of these is not uniform. My notebook

on EPLBSA contains an analysis
revisions,

of the time saved for each of these

1. The only place in the assembler that storage is ever returned to
the free storage pool is in the output listing section. I do not
totally understand what is going on here, but I am convinced that
some other way can be found to handle the output listing, If the
output listing does not return any storage to free storage, then
the free storage management algorithm can be greatly simplified,
This will enable the initialization of free storage, which currently
takes half a second, to be eliminated altogether, Secondly, it
allows the algorithm for finding a block of free storage to be
greatly simplified. At present, all free storage is threaded
together on a list so that returned storage may be reused, If
no storage is ever returned to the free pool, then the available
storage is just the remaining words in a single segment, Searching
for a new block is then merely taking the next N words in Sequence
and updating a counter which counts the number of used words in the
segment, rather than searching through a threaded list looking for
a block of N contiguous words.

2, If references to free storage were changed from absolute addresses
to an index in an array, then all of the machine language subroutines
CLH, CRH, etc., could be replaced. Once this change is made all
references to free storage can be made using subscripted variable
rather than calling a subroutine.

3. In pass 1 only a table of

the pseudo-ops needs to be searched and

not the entire operation code table, Searching a table of pseudo-ops
would be considerably faster than searching the entire operation

code table.

4, The length of POSTPLl could be reduced nearly 400 words by combining
common code in three different subroutines.

5. At present, two table look-ups are made for the first symbol in the
variable field even for instructions such as shift instructions

where no symbol appears,

This can obviously be eliminated.

e

) NN



10.

11.

12,

-2-

The codes used to identify character classes can be recoded as a
numerical index which can be used for indexed transfers in the
routines that get characters from the input stream., This would
allow new line, space, horizontal tab, and semicolon to be iden-
tified in a single test, rather than four separate tests, In
addition, the subroutines NEXT and NEXTINB could probably both be

combined with the subroutine GETID thereby increasing the per-
formance.

The routine EXPEVL could be modified to get rid of subroutine

calls to PREC by directly using the precedence of the operators
in EPLBSA expressions.

The subroutines PUTXT, PULNK, and PUSMB could be eliminated and
words in the text, link, and symbol segments would be stored
directly in the segments. However, the problem of what to do
with relocation bits is still unsolved,

All the error flags could be put in one 36 bit word instead of
stored in 36 separate words. This would eliminate the packing and
unpacking of these error flags. 1In addition, error flags are now
carried over from pass 1 to pass 2. I am sure the need for
carrying the error flags over can be eliminated,

Eliminate all unnecessary character conversions, e.,g., BCD to
ASCII and ASCII to BCD.

Duplicates of routines such as NEXT and GETID, which are used in
both pass 1 and pass 2 could be used. This would reduce the work-
ing set and each of the routines might be specialized to the

pass in which it occurred with some increase in efficiency.

At least the loading order of the procedures should be checked to

be certain that the working set is reduced to as small a size as
is possible,



