Nr—

{
MEMO TO: F.J. Corbatd
R.C. Daley
FROM: R.M. Grahanxﬁ%%?%y
SUBJ: Thoughts on a New Assembler with a Compiler Interface
DATE: January 22, 1969

The following thoughts represent my current thinking as to a direction
for fruitful investigation of the design of a new assembler. This
assembler would have a special interface for compiler generated programs
between pass 1 and pass 2. This is not a completely thought out plan

and hence should be taken as suggestions for further consideration
rather than a firm proposal.

Pass 1 would generate three segments, A combined symbol table in the
first, comments for the listing in the second, and instructions in the
third. The combined symbol table would contain one entry for each
literal, ordinary symbol, link, entry point definition, external
definition, location counter, etc. The comment segment would contain
all information which was to be printed as part of the output listing,
including source statements, The format would probably be something
like a character count followed by a string of characters which con-
stitutes one line of commentary in the output listing, The instructions
in the third segment would be partially assembled and in coded numeric
form. Each instruction would occupy one or more words., Each instruction
would contain the following items.

1. A numeric op-code

2. The index in the comment segment of any commentary which is

associated with this instruction. The final output listing from
the as§6h ler would be produced by merging the instruction (in
octal), its location address, and the associated commentary in
the listing segment. This would result in a minimum movement

of the original source program if an output listing was desired.
On the other hand, if no listing was wanted, then the source
text would be thrown away immediately during pass 1.

N

S
3. The modifier and the settings of bits 29 and!29. U

4, The address expression or a pointer to the address expression,
Depending upon the coding, if the address is simple enough (such
as constant) then the actual address would appear in this field,
Otherwise, it may point to a symbol table entry, if the address is
a single symbol, or to a coded expression. A coded expression
consists of constants and pointers to symbol table entries combined
with the arithmetic operations permitted in address expressions.
It might be wise to restrict the asq&sbly language somewhat by
limiting the generality of the expressions permitted in the various
fields. Since it is anticipated that little actual assembly language

2w

coding will be done and basically the assembler will be used for
compilers, more limited forms of expressions would not be restrictive,
In fact, expressions or even symbols might not be permitted at all

in the modifier field, i.e., only numeric constants,

Also appearing in the instruction segment would be pseudo-ops which
manipulate the location counters. With proper coding many instructions

could probably be coded into a single word while the majority of the
remaining ones could be coded into two words.

The general plan for pass 1 would then be to read the input statements,
parse them and build the symbol table as it does now. In addition, if
no listing was desired nothing would be entered in the comment segment,
If a listing was desired, the source language statements would be trans-
ferred to the comment segment and formatted ready for merging with the
instructions. In fact, they could be formatted such that the comment
segment would become the listing segment by filling in blank space in
the comment segment with the octal instructions and location addresses.
However, this would make it more difficult for a compiler to interface
with pass 2. Pseudo-ops would be processed generally, as they have been
in the past, However, such pseudo-ops as USE would be translated into
pseudo-ops in the instruction segment for changing the location counter
value in pass 2, In addition, pass 1 would also parse and analyze the
contents of the variable field of all instructions. Any expressions
found there would be reduced as much as possible by using current values
in the symbol table in the hope of reducing it to a constant. Expressions
that could not be reduced to a constant would be transformed into coded

form and put, along with numeric op-code, into the instruction segment
for final translation in pass 2.

Since the input to pass 2 consists solely of the three segments, instruction,
combined symbol table, and comment, any compiler which wished to use only
pass 2 of the assembler would build these three segments and call pass 2

of the assembler directly. The suggestions for the format of these are,

in my opinion, relatively easy for a compiler to build, since in many cases
it already has the information available in a similar format,

Pass 2 of the assembler would then proceed in a fashion similar to what
1t does today with the princ¢ipal exception that it does not parse the
input statements, but instead works on the instruction segment, It would
have to read instructions from the instruction segment and finish asse
those which still had expressions in the address field,
coded format,

mbling
interpreting the

b

w \}"“g & .
Al et e
, Ao 270)

LA
v \ I q

WA |

8

e
e T
N o \JA& |
v B SR QAR
N "WX

N
)%
N ¥

