November 26, 1969

TO:

Beatty
T. Clingen

J. Corbatd

C. Daley

Green

Gumpertz

D, Mills

H. Saltzer v

Ln"-lPU:dW'TJOW

FROM:, Adleman

=

SUBJECT: .An EPLBSA - compatible assembler

REFERENCE : M0O065 (Poduska, May 26, 1966)

1.0 INTRODUCTION

As one of the laboratory projects associated with the undergréduate
seminar on Multics, the current EPLBSA assembler will be modified to be main-
tainable and extendable wholly within the Multics.environment. The preéent
assembler is written in (impure) GE-635 FORTRAN IV and GMAP. Of the 37
routines that comprise the Version 3 assembler (which is awaiting a new daemon
program), 27 modules are written in FORTRAN and the remaining 10 programs
are written in GMAP, The GMAP code will be transcribed into EPLBSA code or,
if deemed practical, the GMAP code may be transcribed directly into PL/I
code. The FORTRAN code will be transcribed into PL/T.

The major objectives of this effort are to provide an assembler

which has not lost any of the capabilities of the current EPLBSA program.



Page 2

The goals of this project,‘in their order of importance, are as follows:

. availability

. maintainability

. pure code

. faster assembler (mot necessarily, the first capability)

SWN

It is expected that the product of this effort will be an assembler
that is completely compatible with the functional capabilities of EPLBSA.

This memo considers the additional design required to make the
new assembler pure (and more efficient) within the Multics enviromment., The
following issues will be discussed:

1. A general overview of the assembler's operation,

2, The management of the current assembler's large (42000+ words)

data area within the assembler segment,
3. The disposition of the current assembler's labeled COMMON and
other data (e.g., temporary data, table of op-codes, etc.).

2.0 OVERVIEW of the Assembly Technique

There are three major programs within the assembler. Thesé are
affectionately named PASSl, PASS2, and POSTP2, All other programs within
the assembler fall into the category of utility (e.g., GLPL) or special
purpose (e.g., DECEVL) in their contribution to the translation of a given
source program. The first two major programs (PASSL and PASS2) read the same
source segment., For each object (binary) word or block of binary words,
PASS1 stores the error flags for PASS2. PASSl does preliminary processing
on the pseudo-ops (e.g., CALL, USE, etc.), establishes an internal (to the
assembler) symbol table, and, in general, maps out the core layout of the
program that is being assembled, |

PASS2 uses (and often duplicates) the information established‘by
PASS]l and produces the text portion of the object segment and, optibnally,

the corresponding listing segments,



Page 3

POSTP2 produces the LITERALS (of the object program) followed By
all the system dependent data (e.g., definitions, linkage data, and symbol
data) that permits an object prograﬁ to operate within the Multics environ-
ment. As POSTP2 produces this data, the listing segment is also being completed

with the corresponding printable information,

3.0 FREE STORAGE MANAGEMENT

Within the assembler segment (which is 64K words), a data area of
42000 words is used (for each assembly) to contain information about the |
object program, In this '"42K" is placed, for example, the internal symbol.
table, ASCII names, error flags, linkage information, entry point informa-
tion, etc, This data area is managed as a large list structured table by a
group of GMAP routines under the general heading of GLPL for GE-635 List
Processing Language (See Poduska MO065, page 4).

For the initial transfer, this "42K" will become a separate
data segment that will be managed by a slightly modified GLPL (possibly
in PL/I from the GMAP code) that need be created only once per process,

All accesses to this data by other programs of the assembler (e.g., the LOC
function), must be made aware that this data is no longer within the same
segment (originally a GECOS/GE-635 core 1oéd) but in a separate and distinct
segment,

The present GLPL initializes the entire data area of the assembler
for each assembly, Consideration in the new GLPL should be given to the
possibility of initializing blocks of the list table (perhaps in 1024 word
increments), on an as needed basis while the assembly is proceeding. This
would eliminate some unncessary page "touching' during an assembly., As

an alternative to this, the assembler (GLPL) could reinitialize only that



Page 4

portion of the data area which was used by the previous assembly, This
problem of modifying GLPL is quite delicate within the assembler and should

‘be done when a transferred assembler warrants this type of tuning.

4,0 LABELED COMMON and other data

Having examined the problem of conyerting BLOCK (LABLED) COMMON
to Multics, I believe the best strategy is the simplest. By using EPLBSA
code, a data segment can be constructed that contains pure data in the text
portion and impure data in the linkage portion. This data, both pure end
impure, can be accessed by other assembler programs, by assigning the déia via
SEGDEFs and JOINing theg into the text or linkage,

Let's look at this a little closer, ﬂecause this area is very
important and qﬁite open for discussion, First of all, all labeled COMMON
in the assembler must be identified as to whether it is pdre or impure and
allocated, via EPLBSA code, in the data segment which has been arbitrarily
named <eb_data >, Tor example, let's look at two typical labeled COMMONs
of the assembler, VARCOM (impure) and CONCOM (pure), The code in <eb_daéq_>

would be something like this:

name eb_data

use pure
segdef | concom
concom? null
bss . concom_data, 121
use. ; pure
v segdef ‘ varcom size
varcom size: dec 21 -
use i? impure
segdef varcom
varcom: null ‘ ' ‘ ’
bss :?; varcom _data, 21
join ! N ‘ /text /pure
join | ’ ‘

/link/impure

end



Page 5

Each COMMON declaration would then be transcribed into PL/I code that
represented an external structure in <eb_data >, Each structure could be a
single PL/I include file that be included in a program of the assembler at
- compilation time by a "% include" statement, The code produced by the PL/I
compiler would then access this external structure properly.

Also included in <eb_data > could be other major data of the
assembler such as the 102410 word op-code/pseudo-op character table (aligned
on a page boundary, of course), conversion tables, etc. Smaller data items,
such as variables local to a pafticular subroutine, could remain in the

stack frame for that program,

5,0 SUMMARY

This memo does not attempt to resolve all the difficulties associated
with transferring the assembler, Rather, the major areas were examined to
relate the general flavor of the expected problem areas in the project.

It has been noted that it may be less expensive to design and pro-
duce a completely new assembler for Multics. I must disagree, especially
in light of satisfying the objective of "availability' mentioned above,"
Furthemore, I believe that structurally and logically the assembly technique
- used in the assembler is quite gpupd. Once the initial transfer is completed,
a sound,‘working agsembletr can then be extended, at will, in its proper environ-

ment under proper conditious.



