\2

MEMO TO:

FROM:

DATE:

SUBJECT:

MASSACHUSETYS CTUL L L TR
Electronic oyoiemi Lioboialory
COMPUTER-AIDLL DES O PRGOS

idg Massachuscots 02139
Cambridge, aci ¢

ESL Memorandum 70428-4-210-0

Files
J. E. Rodriguez
January 6, 1968

AED in MULTICS

’e

A INTRODUCTION

This document presents the initial wesipn ol an Aby cornilaer

for MULTICS.

The main purpose of this initial design is to facilitate a

first bootstrap of the ALD system from the IEM 7094 to the Ci 645.

It is expected that a sccond bootstrap from the €45 to the 645
will take place shortly after the initial system is running in the
MULTICS environment.

The design of the initial compiler and support library is intended
to provide an environment which will minimize machine dependent
problems on the basis of the AED effort's experience with the UNIVAC 1iC8

and IDM 360 bootstrap efforts.

Questions of compatibility with MULTICS standards have been

. considered and it is felt that their final solution should be postporned

until the second bootstrap takes place. For the first bootstrap,
compatibility is provided only insofar as it is required to guarantee
the success of the initial bootstrapping effort. This essential
requirement is satisfied by
a. providing means for calling a procedure outside the AED
environment from any AED procedure.
D. allowing calls to AED procedures from the outside world

only at certain selected points.

B. THE AED ENVIRONMENT

A process containing AED programs consists of:

1. One AED data segment.

2. An arbitrary number of non-AED data segments.

3. An arbitrary number of procedure (AED and non-ALD)
segments.

4. The necessary linkage and symbol segments to accompany

the above.

Q. The ARD Bata Sepment

An AED procedure may dircctly access only drca contoived in
tiie 40D gata segment. Data {rom aayv other segment nust be roved
to the AlD data segment before an Al orocodure can accoss To. sovino

will take place, under normal circumstances, thrournh:

)

i. storage allocation procedures acvivated by &2 faulis.
ii. calls in the AED I/0 package (I0LCP) or an cguivalent

substitute.

rories:

&

Data in the AED data segment falls into five cate

e

i. Internal static
All variables, constants, and argument lists, in non-recur-
sive AED procedures, are in internal static storagec.
The storage for these variables is obtained and initialized
if necessary at the time that the first call to a procedure
of a segment is attempted.
ii. Automatic
Owvn variables and argument lists in recursive AED procedure
are in automatic storage. A chained stack in the AED
data segment is maintained by AED support procedures to
hold the automatic storage.
iii. External
Separately compiled data segments are moved into the ALD
data segment at the time that their first reference is
attempted.
iv. Common
All common variables are assigned on the AED data segment
at the opposite end from all the other storage. The two
categories of storage (i.e., common and non-common) share
the data segment oﬁ a collision basis. Common may not

be PRESET.

G

S Vo .t*‘; e COn T e L |

57 et

. . Ty
beyweV 8 fem el

;

i

{

/
|
i

\

i

! H
4 — e
}

%

!

§ Gomt X wed ‘f//’yQ'L g

o

i
fwdbad 1 -
!

bl brlCi\

S ——

Qb\fm}rmun I

s+kbrd

/fED 3}‘6«’}”\‘_

_,
) S

%efa bnd |

;:7 wye Jla -~ ‘,(_cu-} m.?t o] AED ‘,/QO_,{R 57/«Mw

/

V. Free Storape

All storage in the ALD data scoment not attachod Lo wny
of the first four classes is administered by the Froe

Storage package.

Figure la shows the layout of the ALD data segment. 71he serment

Tows:

ot

is divided into five regions as fo

- system control [G-sysbnu]

P <

. - internal static and claimed free storage [sysbnd - fwubdn]

3

. - available storage [{fwdbnd - bkwbnd]

common [bkwbnd - stkbnd]

w N~ U
.
|

. — ALD stack [stkbnd - topbnd]

The system control region extends from location O to location

"sysbnd'.

The internal static and claimed free storage region extends
from "sysbnd" to 'fwdbnd'. This region grows as 'fwdbnd" is

increased by the AED storage allocator and/or the free storage systen.

The available storage region extends from "fwdbnd" to ''bkwbnd’.
This region shrinks from both ends as "fwdbnd" is increased and

"bkwbnd'' is decreased.

The common region extends from 'bkwbnd" to "combnd". This

region grows as ''bkwbnd" is decreased by the AED storage allocator.

The AED stack region extends from 'combnd" to 'topbnd".
This region varies as 'topbnd' is changed by the enter and leave
sequences of AED recursive procedures. The maximum value of "topbnd"

is given by "fulbnd".

ducress Name Descrintion

G -7 - unused
5 sysbnd address of first location in forwsrds-growing
region
9 fwdbnd address of next available location in

forwards-growing region

10 bkwbnd address of next avsilable loca:

1
3

in

ot
e

o

>
>

backwards~-growing region

i1 combnd address of first location in hackwards-

-t

growing region

12 topnd address of current AED stack frame

13 fulbnd address of last location in the data
segment

14 dbgptr address of trace request table

15 - unused

lo-17 condptr address of ‘“condition" procedure
segment

18-19 reverptr address of '"reversion' procedure
segment

20-21 unwinder address of '"unwinder' procedure

22-23 aedlnkgptr address of ''aedlnkg' procedure
segment

24-31 - unused

32-50 statistics array of procedure event statistics

51-(sysbnd-1) - unused

Figure 1b - AED Data Segment System Control Information

C. DATA TYPLS

Identifiers of type real, inverer, boclern nnd olnter ore
ciiocated one word of storarce. The wrincinal consoonomcoe of o

single AID data segment is thot peointer variables reavire oniy
15 bits to contain an address.
Identifiiers of type label, proccdure and switch which are uscd

as the operand of a2 LOC (either explicitly or implicitly whon uscd

13

s arguments or in presets) are allocated six words of storaje

aligned at an cven address.

In data structure declarations, unpacked components are handled
more efficiently than any packed component. Among the various forms
of packings, left half and right half packing is handled wmorec

efficiently than any other form of packing.

D. INTER PROCEDURE COMMUNICATION

The compiler supports two forms of érgument lists for inter
procedure communication, the AED enviromment argument list and
the MULTICS argument list. The choice of the form of argument list
is made at compilation time on an individual procedure basis or
as a global option for all procedures in a given compilation. The

normal mode is assumed to be the AED environment argument list.

Since the form of the argument list is determinea on an individual
basis, it is possible to have in the same program any mixture of

forms of procedure definitions and procedure calls.

CALL, SAVE and RETURN conventions for both forms of procedures
are identical, and consistent with the MULTICS process stack

requirement.

I _environment arpument iist

i

ALD environment argument lists concist of n words wieore o

the number of arguments. Figure 2 shows the storare structure of
the argument list. Each word contoins a "typed' short aata pointer,
Tie left half of the word contains a rolative pointer {offcet

the ALD data segment) to the datum. The operation ficle contoins

1]

a code indicating the type of the datum pointed to Ly the left half.
The end of the argument list is indicated by a 1 in the hirh
order bit of the operation ficld.
An empty argument list is signified by a null argument list
pointer. Table 1 shows the relationship between AED argument lists

and the type of data items being transmitted.

AED pointer data maps into MULTICS relative pointcr data. Procedure

items differ from the corresponding entry data of NULTICS in that
the code 208 has been placed in the operation field of the even
wordé of the program point ITS pair. The differentiation between
label and procedure items is necessary because an AED procedure
with a formal parameter of type procedure may be called with an
actual parameter of type label. By looking at the data item, the
calling procedure can decide whether to call the procedure directly

or call the "unwinder" instead.

MULTICS argument list

A MULTICS argument list consists of n+2 or n+3 word pairs where

n is the number of arguments.

Figure 3 shows the storage structure of an argument list. The

first word pair contains control information in the even word as

follows:
i. the left half is 2%(n+l)
ii. the right half is zero if there are n+2 word pairs and

2 if there are n+3 word pairs.

The next n word pairs are ITS pairs for each of the arguments.
Immediately following is an ITS pair for the value of the procedure.
This ITS pair appears whether or not the procedurce has been docLarod

to Le valued in the program oritinciing the call. The arcunernts

and value ITS pairs point to a atum.

Lo

¥
Yo
ERAvY

]

ome

oL
v QL

(&>

<

T

C ———
~N -~

SO

Type No. Argument Type Storage Structure

1 integer, boolean
3 real
14 ‘ pointer
15 label - _ program point
~ stack pointer
16 procedure o , _ program point
17 l-dimensional array of

integer, booleans

19 ' l-dimensional array of
reals
30 l1-dimensional array of
pointers
31 switch -
TABLE 1

Types of Arguments and Their Storage Structure

-o—

IX9L 2Inpado1d JO U0IDTINS ‘4 2an31y

Apoq =]
1Inu t3TUT
3yurpoe 3qurpoe B3
. o adL3oaeaT oxe?d
IInu 10 anyea plJ o anTeA bpt 1uan3lax
1Tnu :Apoq
aueu aanpadoad 103 *D° ,2urudoxd, Io®
Ieydu/z1°9/90/9T P3A
JITUT B1]

3yurpoe 3yutpore dqgsa
ad£3x53u0 oxed

OJuI°3ud bept :dueudoad

*SutasIt

A1ru9sse ue ul aeedde Aew 3T se x93 2anpadoxad 3yl JO UOIDTIYS 2Y3
SA0YS # 2inTT] 2dudnhos UOTIBZITBIAITUT pue aduanbas uinjyax ‘Aroq
‘2oudnbos 123ud I9pao 2yl uT podueixie ATTedrsAyd ST oduanbos stug

2ouanbos uaniaax *h

Lpoq -¢
9ouonbds UOTIVZTITETIITUTL °z
9ouonbos a1o3juo T

130 s35TSu0d aanpodoxd giy uy

IX93 9anpoooxd BYyT

*oanpasoxd parTed

TUIOZ0 2UDWUOSATAUD DU 1031 Iojurted fwexy yoels 9yl SUTILIU0D 3T puw
UG En DUTUT 4wt wsed eIyl up caojowweaed e ST TTRD

Pl inE 203 Z0ASUSHN pown I 38T judundae pojusuldny

During execution of an ALD procedure the base register palre
arc used as follows:
ap - points to the procedure arpuuceat list
bp - points to the base address (in the AED data sepment)
of internal static storage in non-recursive proccdure
or to the AED stack frame in recursive procedures.
1p - points to the linkage segment.

Sp - points tq the process stack frame.

)]

Lase Register pair bp is loaded in the save sequence from a word

pair in the procedure linkage section. The contents of this word
pair is set to point to the proper address in the AED data scgment
at the time the first call to any procedure in the associated text

segment takes place.

The four base register pairs are saved at the end of the save
sequence in the process stack frame. The procedure text never
modifies the contents of bp, sp, and lp. The ap pair is modified
only when a call is made. However, the old value is always restored

by the return sequence of the called procedure.

1. Enter sequence

The function of the enter sequence is to secure a process stack
frame, save whatever registers are necessary in either the old .
frame or the new frame, and obtain whatever dynamic storage, is

required.

2. Initialization Sequence

The initialization sequence performs the following three functions:
i. It sets up every usage of an argument in an argument list.

i. It saves in an internal static location the address of

[N

every argument used by an internal procedure.

iii. It sets up the process stack pointer value in every label
entry datum used as an argument.
3. Body

The body contains the working code of the procedure.

~-10-

4, Return scquence

R oD R

. PR N
H

*The function of the return sccucnace is o seb the valae ol
the procedure, free up whatever dyuunic storapse wan obtolned by he

-

save ond initialization sequences and return to the caller.

The in-line code generated for the enter and return soguences
is a special subroutine call on an appropriate entry in the Al

utility routine segment acdlnkg . There are entries in this

[

[s0}

segment for handling four types of enter scquences, 12 types ¢
norrmal returns and two types of abnormal returns. Table 2 shows

the code assignment for th aedlnkg routines.

One of the advantages derived from the fact that all procedures
enter and leave through common sections of code is a ready-mace
debugging facility with dynamic tracing and multiple breakpoints
at a sufficiently fine level, i.e., a procedure call, for most

high level language debugging needs.

An AED compilation contains the following items:
1. For each defined external procedure, the standardé MULTICS
entry sequence to load the lp base pair and transfer to

the procedure entry address.
2. For each external reference, the standard MULTICS link.

3. A link, stat.loc, to aed data [xxxxxx] where Xxxxxx is
the procedure segment name. This link is initially set
up with a trap-before-link to invoke the AED data segment
static storage loader, acd datmk [aed datmk] with
argument list trap.arg.
Trap.arg is a two word element residing in the text segment
and has the structure shown in Figure 5. The first word
contains the total length in words, of the internal static
storage in the left half and the length of the common
storage in the right half. The second word is a relative
pointer to a link which when snay soints to the first

block of initialization data.

-11-

10

11

13
14

15

17

18

enter ALD non-recursive procedure

return from non-valued AED non-recursive procedurc

return from integer, boolean or pointer AED non-recursive

procedure
return from real valucd AL non-recursive procedure
enter ALED recursive procedure

return fron non-valued AED recursive procedure

return from integer, boolean or pointer ALD recursive
procedure

return from real AED recursive procedure

enter MULTICS non-recursive procedure

return from non-valued MULTICS non-recursive procedure

return from integer, boolean or pointer MULTICS
non-recursive procedure

return from real MULTICS non-recursive procedure
enter MULTICS recursive procedure

return from non-valued MULTICS recursive procedure
return from integer, boolean, pointer MULTICS

recursive procedure

return from real MULTICS recursive procedure
abnormal return through label

abniormal return through switch

reserved, see debugging facilities (Section H)

Table 2. Code Assignment for aedlnkg routines

-12-

The furnction of the statie ctoracce loader i Lo abisn

storage in the AED data scon

and, if necessary, for the
the storage, the loader processes the initializatiown
data, copying and relocating short pointers zs necensary.,
Links to external refercnces are snapped by the loader

before copying them into thie data segment,

Upon return to the linker, the fault-inducing link centains
an ITS pair pointing to the ALD data segment location
which will thereafter serve 2s the addressing base for
the internal static storage.

4. For each recursive procedure a word pair in the linkage

segment as shown in Figure 6a.

This word pair, sv.stack, is an ITS pair pointing to
the AED stack frame for the last invocation of the procedure.
If the procedure is not active, sv.stack is the null
pointer.
5. For each procedure defined a word pair in the text segment

as shown in ¥Figure 6b.

This word pair, ent.info, is the argument for the enter
sequence routine. The first word contains the offset

of the stat.loc word pair in the left half and either

zero or the offset of the sv.stack word pair in the rizht
half. The second word contains either zero or the AED
stack frame size (i.e., frame header plus automatic storage)

in the left half and zero in the right half.

The process stack and the AED stack

Every procedure uses the MULTICS process stack. 1In addition,
recursive procedures use a separate stack, the AED stack, maintained

in the AED data segment by routines in the aedlnkg segment.

~-13-

trap.arg: ~intent coment

initdata 0 trap procedure arglisc

Figure 5 - Word pair for control of internal static of

an AED compilation.

sv.stack: - . - save stack pointer
a3 .
a)
ent.info: ! stat.loc . sv.stack | enter sequence argument
fram.size 0
b)

Figure 6. Word pairs for control of procedures' enter and

leave sequences. One for each procedure defined.

—1b4—

~AG o azuiod
LAY B .

R E O)

bt :

- PR

« =

$24Npos0old 13V 494

o

SIULTE I LA NS

1
k]

131] Bio Jopuimun

«
e
.o

11 3onis Q3v o4 Jsjutod

\
Z
7+ Auo oy aoquted | sy
7

. e O

A
/i
O

“I(' -

|
Coy 3 ‘.
.} =y $
! o
! R .
; i - ~ !
i . ALY
+ e N
"
1 o
, o o s
v L
T
5 3
L.y O
youl P
i S
< N
[
e “
5 i . . z
i L
i
-1 v o sy ' e
% -

AED stack

""'\\

“he process stack is usoed o save cihe machine reosictorn 3
for remporary storage during enter and leave SCqUencen. & potoons
stack frame procedure is always LG vords lons. Virure 7 osoown the

stack frame layout. The first 32 words are uscd dn tho
“ULTICS fashion. Words 32 and 33 arc an ITS pair pointing to Uhc
Jocation +3 of the procedure which obtained the frame. Words 34
ond 35 are an ITS pair pointing, in a recursive procedure, to the
ALD stack frame associated with the process frame. The last four
words, 36 through 39, are used for the “unwinder" argument list

in abnormal returns.

e

The AED stack is used for allocatins dynmamic storage in recursive
procedures. The stack resides in the AED data segment. Lach Irame
in the AED stack consists of a 12-werd header followed by tuc
procedure'ss dynamic storage. Figure 8 shows the layout of the
frame. TFigure 9 shows the relationship between the linkage segrent
control word sv.stack, the AED stack and the process stack. The
figure depicts the condition existing when a procedure prec is

called recursively through the following sequence: proc is called,

it calls zilch which in turn calls proc.

Every AED stack frame points to its matching frame in the process
stack. Every process stack frame associated with a call on a recursive

procedure points to its matching AED stack frame.

The old value of the sv.stack pair as well as a pointer to
that linkage segment location are saved in the AED stack frame.

Upon return, the old value is put back in the sv.stack pair.

Addressing strategy

This section discusses the addressing of data items in the procedure

text. For this purpose, three classes of data items are considered:

i. static data
ii. dynamic data
iii. arguments

-15-

The addressing strategy for each of these cl. .cs is shown in Tobles 3,
14

4, 5 and 6.

The following conventions are uscd:

i. for non-recursive procedures, the base pair b
to the zeroth word of internal static storage in
data segment.

ii. for recursive procedures bb bp points to the zeroth word
of the AED stack frame.
iii. disp denotes the offset of the zeroth word of a data item

from the bb bp value.

iv. the base pair ab ap points to the argument list of the
procedure.

18-

disp ~ 10K
Common

disp > 16K

disp-¢ 16K

Recursive \\

N\
v\dispg;l6K "
Internal
N disp < 16K -~
Non-recursive
disp 16K
External

TABLE 3

[T B
ULBULDECTID LU

subscripted

-unsubscripted

subscripted

-unsubscripted

subscripted

unsubscripted

subscripted

unsubscripted

~subscripted

unsubscripted

. subscripted

unsubscripted

subscripted

Addressing Strategy for Static Data

-19-

O
eI G
s

[

eaxj
opr

eax]j

eaxj
opr

eaxj
eaxj
opr

opr

OpT

eax]
opr

eaxj
opr

opr

opr

GLLD
ot

tb common,*j

disp
ip stat.loc,*j
bb G,j

disp,i
lp stat.loc,*i
bb 0, j

Local

Global

Components

label

disp - 16X

disp - 16K

label

disp . 16K.

disp " 16K
TABLE 4

Addressing Strategy for Dynamic Data

-20~

unsubscripted

subscripted

unsubscripted

subscripted

.unsubscripted

subscripted

eaxj

cOT
B

eaxn]
opr

-
7

S arsr

T e
L HRAXALL

o,

isp
ip sv.stack,*j

disp,i
1lp st.stack,*j

bp disp,i

Non-Program

Point

Program

Point \\\\

AN
.

~ |

Note:

Local

Global .

Local

\w
Global

TABLE 5

5 .)
D SRR, S |
UNEGLSITLpead

subscripted

procedure

label

switch

procedure

label

switch

Addressing Stfategy for Arguments

-~

) . .

cp argwrd,¥i
o

S Gk

EP «U,

; o

bp argno,®

PREXI

T

LRHEK

SXEXXK

bp argwrd,*

PHKKXK

argwrd is a location in internal storage containing a copy of
the contents of ap argno.

pRM®X:

Ixxxx:

SXXXXg:

Ixxxxi:

Sxxxxi:

Internal Compiler Generated Routines

lda
ana
tnz
eax0
tra

ecapbp
eax0
tra

eapbp
eax0
tra

eapbp
eax0
tra

eapbp
eax0
tra

eapbp
eax0
tra

bp O
=$20000,d1
bp 0,%

16

aedlnkg [aedlnkg]

bp argno,*®
16

aedlnkg [aedlnkg]

bp argwrd,®
16

aedlnkg [aedlnkg]

bp argwrd,®

17
aedlnkg [aedlnkg]
bp 1labdata
16
aedlnkg [aedlnkg]
bp labdata
17
aedlnkg [aedlnkg]
TABLE 6

T
3

et program point ITS
s it a procedure?

es, execute

o, is a label

erform abnormal return

I

YO8 g

¢et pointer to label dotunm
perform abnormal return

get pointer to label datum
from initialized location

get pointer to internal
label datum

to Affect Abnormal Returns

J O Preset Date

o

. . . 1
The initialization of internal scatic data w

prescet at compile time is periormed by the toop procedure sod-d:
immediately after it has allocated the stora

segment.

The bead (ent.info) supplied as an argument to the trap procedure
has a component which points indircctly through a link to the Leginning
of the preset information. The preset information censists cf z seguence
ol variable length blocks. Zach block has a header containinz control
information and a body with the actual preset data. The enc ol the
sequence of blocks is recognized by a word of all zeros where the first
word of a header is expected. Figure 10 shows the storage structure

of a complete sequence of print information blocks.

The header of a preset block consists of three word The first

[oN

the

S.
word contains the origin of the preset data on the left half an
number of words in the body on the right half. The origin is given
as an offset from the beginning of the static data for the procedure
segment. The next two words in the header are relocation codes. There
is one relocation code for each half word in the body of the block. A
variable length coding scheme is used. No relocation is indicated by
a code of zero (one bit) all other relocation codes are four bits

long. TFigure 11 shows the code used.

A brief description of the interpretation of each relocation

code as well as instances of their use by the compiler follows.

1 Neither COMMON nor dynamic storage can be initialized in the GE 645

implementation of AED.

~2}3-

prescet...ia

arel cnil
relocation
bits
arg? cnt2
relocation
bits
argn cntn
relocation
bits
0 0

cnt2

cntn

Figure 10 - Storage Structure of Preset Data Information

1000

1001

1011

1100

1101

1110

1111

absolute

add bp

add 1lp

snap and use ofiset

subtract from common

use bb
use 1lb
snap and use segment

use pb

Figure 11 - Relocation Codes

-25-

1000

1001

1010

1011

1100

il0l

1110

absolute

add bp

add 1p

- snap and use offset

subtract from COMMON

use bb

use l1lb

snap and use segment

[EEEEEY

tie half word is copied into Lo ALD
data segment without modilication.

Used for constants.

the internal component of the stogic
data pointer (stat.loc) io added o
the contents of the halfi word.

to preset pointers to static data.

the internal component of the Linkage
section address is added to the contents

of the half word.

the half word contains the offset of a
link. This link is snapped and the
internal component oI the effective address
is copied into the ALD data segment. Used
to preset the program point in entry data
for procedures and to preset pointers

to external data.

the contents of the half word is subtracted
from the address of the first location of
COMMON storage. Used to preset pointers

to variables in COMMON.

the external component of the static data
pointer is copied into the AED dat
segment. Used to preset the segmen

number in long pointers to static data.

the external component of the linkage
section address is copied into the AED

data segment.

the half word contains the offset of a
link. This 1link is snapped and the external
component of the effective address is

copied into the AED data secgment. Used in

wm Sy yam e ERS A e . T e
conzunculion wita ShEap Qg v Tl
I h o o o e
(R VER V) O DTEECL CLC VTOIVLL. ToLnl

G desany gD te e T e e ey ey
10 ehLuyly Gaca L0W pUoteLdles.

-26—

ct

~ e oy emam - P ~ S S,
1111 -- use pb -— the cxternal component of the wrecedure
& -

entry address is copled into the ALD

- .. PR [T, B S S
data sepment. Uscd to presci tac

o oty deta Lae Tatata
t in \..n'\.a.j Goacd LO0T7 LLADLLLE

program poir

L

o)

1

and switches.

T. EXTERNAL DATA

Static data of a program can be made available to other programs
by name through the use of the EXTERNAL declaration and the PRESET

statement.

A program defines an identifier as external data if the identifier
is declared to be external and is preset in that program. A program
references an identifier as external data if it is only declareu to
be external. The naming conventions used to define and reference external
data are the same as the conventions used to define and reference

external procedures (see Section G).

A reference to an external datum is accomplished with two links:
& reference link and a definition link. Every procedure which references
an external datum has a reference link to that datum in its linkage
section. All the reference links to a datum resolve to the definition
link for the datum. This definition link is in the linkage section
of the procedure where the datum is defined. A reference link has an
indirect modifier, while the definition link contains, after it has been
resolved, the address of the external datum in the AED data segment.
Figure 12 shows the relationship between reference links, definition

links, and the AED data segment for an external datum.

To accomplish the definition of an external datum, the unresolved
definition link has a trap-before-link procedure associated with it.
The trap procedure, aed_datmk [ext_data], has as an argument an
element containing:

1. the offset of the stat.loc link in the linkage section

2. the ofifset of the datum in the procedure's static storuge

-27-

> 7y
- Y ¢

o R A g -
ey i |
!

i | |
! l / -5 w2 g i
| y o) A2 :
’ ! "/*5—[,.1;&4,.(- /éJd&/"_’ //"" O/ A2l ' i
i . |

| I T Lon i
‘ ., :
H 7N |
b : .;
i i |
4 P (‘
§ ! B |
| T €l ;
. ;
G SRS !
!9‘[;
o el
v H
e . Dt
, TP L. SRS E, |
| / { |
i h }
| H
‘; l :
| | |
‘ . 7 e, A :]
1__,______~4:j so f»ﬂ:.v fk fr g :

PSS

. S s - / ~ ~/":.
Tl AL g o ol gl ST

P’:\; 2.7 KMQ&W ./;:/_-), ﬁ’,‘,_%_«/ N EA "/7 #

»
2 ’
./,//4;,,,;{’ , e Ao i 7% </ /W - i e

The trap procedure obtains the address of Lhe procedure's ctutic storage

.

‘rom stat.loc, adds to it the datum's offset, and forces the definition

r

link to the computed AED data segment address. 1t is possible that at
he time the first reference to the external datum occurs, the stiatic

storage for the procedure has not been allocated. Under these
ircumstances, the trap procedure aed_datmk [ext_data] defines

both the stat.loc link and the definition link. The definition

of the stat.loc link implies that the static storage is copied

into the AED data segment.

G. NAMING CONVENTIONS FOR EXTERNAL PROCEDURE AND DATA
1. Reference

In order to reference an external procedure or datum, one must
specify a segment name and an entry name. To facilitate the specifi-
cation of these two names the character ":" has been added to the
AED character set with the same item building properties 'as alphabetic

characters.

Given an identifier for an external symbol, the following rules

are used to derive segment and entry names:

i. If a '":" is not imbedded in the identifier, the segment
name and the entry name are the first six characters

of the identifier.

If a ":" is imbedded in the identifier, the segment name

e
[ol
.

is the substring composed for all those characters to
o,

the left of the first occurrence of a ":" and the entry

name is the first six characters to the right of that

Thus if free, setfree, free:free, setfree:setfree and free:setfree are
identifiers for external symbols, the corresponding segment and entry
names in EPLBSA notation are free [free]. setfre [setfre],

free [free], setfree [setfre] and free [setfre].

-20-

2. Definition

“he segment name of a procedure or externa
m with file name “alpha" is ecither

progra

aryumncnt of the command used to invoke the c¢

argument of the command is always
given, it is taken as the segment name. therwise,

argument is

2
2]
(]

ient name.

the file name is used as the default segn

entry name is derived following the same rules used for

external references. Note that if the identifier "proc:name"

is used in a definition, the external name of the symbol will not
be proc [name] unless the name given to the segment using the

rules above is "proc'’.

H. DEBUGGING FACILITIES

In the procedure linkage machinery, the "“aedlnkg' module gains

at entry to and exit from every AED procedure. This facility

control

is used to perform enter and exit time procedure calls on user

specified trace procedures exactly as if these calls were inserted

at the beginning and end of the user's procedures. The trace procedure

to call is determined by searching a user-provided table. Error

checking is provided to prevent procedures from attempting to trace

themselves.
In order to activate the tracing facility, the user specifies a

trace table by a call on procedure aedlnkg:setdbg of the form:

aedlnkg:setdbg(trace.table.ptr) §,

where:
trace.table.ptr 'is a pointer to a trace reqguest table constructed

by the user.

The effect of this call is to save the trace table pointer in location

"dbgptr" in the system control information region of the AED data

segment.,

-30-

fad

b . 3w - ~
beads with the

The trace request table is a chailned list o

structure shown in Figure 13.

nextbd tracer
_procnanmne 0
Figure 13 -- Structure of Trace Request Table DBead
NEXTBD is a pointer to the next bead in the chain. A zero

is used to indicate the end of the chain.

TRACER is a pointer to an entry datum for the procedure to

[«
®

called, i.e., the trace procedure.

PROCNAME 1is a .C. pointer to the name of the procedure to be
traced. This .C. is compared with the .C. placed by

the compiler in the body of a procedure text.

The value zero in the procname and tracer fields of a trace request

table bead is a special case.
The "aedlnkg' routines search the trace request table as follows:

The procname field of the current request bead is examined. If
it is zero then it is assumed that a trace is desired independently

of the true name of the procedure. Otherwise, the contents o

L}

procname is taken as a .C. pointer. This .C. is compared with
the .C. supplied in the procedure text. If the comparison
is unsuccessful, the search advances to the next request bead

in the table and the tests are repeated.

—-. Once it had been determined that a trace is desired, the tracer
field of the request bead is examined. If it is zero, then no
trace is effected. Otherwise, the specified tracing procedure

is called.

(™

The effects of this search procedure are:

1. @ zero procname and non-zero tracer will trace 2171 proccdure
calls.

2. a4 non-zero procname and zero tracer will inhibit any trvoce
that may be requested by a request bead located aftcer his

one in the trace table.

Trace request tables are constructed usi

”
}.J
o}

a2
o
o
|4

The trace procedure specified in the "tracer' componecnt of a

trace request table bead is called as follows:

TRACER (name, RETRN, code, val) 3§,

wheree:

name is a .C. pointer to the name of the procedure being

entered, left, or passed through (in abnormal returas).
.+ RETRN is a label which can be used to obtain the arguments of

the traced procedure using the ISARG package.

code is an integer specifying the event. The possible
values of code are given in Table 2. A code of 18
is used to signal the event '"passing through in an
abnormal return".

val is the value of the traced procedure and is meaningful

only when "code'" indicates a normal return of a valued

procedure.

I. SPECIFICATION OF AED AND MULTICS PROCEDURES WITH THE BOOTSTRAP COMPILER

Section D indicates that the compiler supports two forms of argument
lists: a standard MULTICS argument list and an abbreviated AED
argument list.
The specification of the form of the argument list expected
by a procedure occurs at compilatioﬁ time through an option in
the commend line. The normal case assumed by the compiler is

the abbreviated AED argument list.

-32~

The ceneral form of the command line is:

A :
R ALD145 filel - segnam - (MLTX) -file2-

¥

where:
ALD145 is the name of the bootstrap compiler.
filel is the primary name of the file to be compiled.
segnam is the optional name of the segment to be created. If
"segnam' is omitted, filel is used as the se¢pment
name. -
(AED) are the names of the options controlling the form of the
and (QILTX) argument list.
(AED) means that all procedures defined or reicrenced in
"filel" are ALD procedures.
(MLTX) means that all procedures are MULTICS procedures.
file2 if present is the name of a file with secondary name

"ALGOL'" containing the names of procedures which are

exceptions to the rule given by the preceeding option.

"file2" must be line marked with one name per lire starting
in column 1 and no extra characters (except for the CTSS
1

null character). 'file2" is ignored unless "(AED)" or

"(MLTX)" is present in the command line.

Examples:
1. R AED145 filel segnam

or

R AED145 filel segnam (AED)

means compile "filel ALGOL" using AED argument lists for

"

3

all procedures and name the resulting segment "segnaw
2. R AED145 filel segnam (QMLTX) file2

means compile "filel ALGOL" using MULTICS argument lists
for all procedures except those whose names appear in "Illcl

ALGoL"

A successful compilation yields a file "filel eplbsa'.

-33-

