G0035

May 20, 1966
To: MULTICS Distribution

Prom: R. C,. MeGee

The attached paper by Nguyen, Slosberg, and Joel describes a method
of using the 645 running under K2 GECOS for debugging MULTICS
modules. The programming necessary for sccomplishing this mode

of nperation is being done jointly by Dave Joel's Development Tool
Unit in Cambridge and my Programming Integration Unit in Phoenix.

Tie method dedicates one GIOC for use by GECOS and leaves the

second GIOC available for use by MULTICS modules. 1In addition,

it provides a method for a module under test to gain complete
control of all 645 hardware features while maintaining access to the
development tools provided under GECOS.,

/eh



OO 54
May 13, 1966

Initial Utilization of the GE-645 at Project MAC

V. B. Nguyen, D, H. Slosberg, D. E. Joel

Introduction ’

It is planned to utilize the GE-645 in two distinct phases:
1. Phase 1 uses the hardware in exactly the same way that the GE-635 is
currently being used, i.e., using the present 6.36 and 64.5 systems

and their logical extensions.

2. Phase 2 brings the user closer to the GE-645 by removing the simu-~
lator from the 6.36 and 64.5 environments, allowing a process to
execute instead of being simulated, permitting the process to per-
form input/output usihg the entire facility of one GIOC, and permit-

ting the process to handle its own faults.

Phase 1 provides a good environment for "bringing up" the GE-645 using K1 GECOS
(or later K2 GECOS), and at the same time giving complete backup in the shape

of the GE-635 still on site, Note that Kl or K2 GECOS consists of GE=~635 GECOS"

plus a supplement (herein named the GECOS Supplement).

Phase 2 provides the software developer with a broader facility, while still

retaining basic control of the GE-645 by K1 or K2 GECOS.

A main design objective is that users of the 6.36 and 64.5 systems will be able

to run jobs in Phase 2 without realizing the disappearance of Phase 1,

Phase 1
The only requirement to implement this phase is that K1 GECOS (using an IOC) be

operational, i.e., that the GE~645 can be run in exactly the same way as a GE=635

(as viewed from the users end).

~ \Nﬁ;ﬁ& Y



LR e el =

Page 2
This environment is to be checked out in Phoenix prior to delivery of the GE=645,

The checkout procedure to be used is complete running of typical 6.36 and 64.5 Jobs.

Phase 2

The method of operation planned here is exactly the same as in Phase 1 except
during the one activity in a 6.36 or 64.5 job which 1s devoted to loading and

executing a 645 process.

The main characteristics of the operation at load/execute time are as followsi
1. The GECOS Supplement, on request, yields information about the '635
Slave' activity currently in execution. This allows the 645 loader

to detarmine its own environment,

2. The GECOS Supplement, on request, sets a '645 Process' switch which
causes interrogation of a users pseudo fault and interrupt vectors
when a fault or appropriate interrupt occurs, and reflects the con-
dition to the user as indicated by the contents of the appropriate

vector.

3. When a fault condition occurs with the '645 Process' switch on, and
the appropriate entry in tie users pseudo fault vector indicates that
the user is not handling this condition, the GECOS Supplement passes
control to a termination routine in the 645 loader thrﬁugh a fixed
communication zone. This permits the normal form of dump given by 6.36

or 64.5 to be obtained in preference to the GECOS abort dump,



Page 3

4. It is normal practice to use two libraries to set up execution.
One contains 635 subprograms (e.g., the 645 loader), and the other
contains 645 assembled segments (especially the special inclusion
segments), Any changes required converting from Phase 1 to Phase 2

operation are handled entirely by manipulation of these two libraries.

5. The 645 Process placed into execution is in a position to do anything
it wants to, and thus can cause a catastrophic software failure. It
‘is & design objective that the user have this freedom while still

trying to catch error situations if possible (see 3 above).

The specific requirements of the system are described below in some detail,
with particular emphasis being given to interface details:

1. The GECOS Supplement

When a 635 slave activity is set up, the basic mechanism is that of
building a descriptor segment. The entries which are required in the

descriptor segment are described in Figure 1.

for the GIOC assigned to
645 process work only,
unpaged.

] 1 1 |
! Segment ! . H D g

! i Q- i escriptor ]
| Number Description ! Attributes !
i I ] i
| = | |
i 5 i Describes tue assigned 635 ! Slave procedure, i
i i slave memory, unpaged, i slave access, write
i {1024 word blocks. I permit. ;
: ; H \
] 1 1
i 6 i Describes the mailtox area E Data !
: | : ;
1 1 ]

' ' : :
i i i i

Figure 1., Descriptor Segment for 635 Slave Activity.



Page 4

It is necessary that the 645 loader make requests of the Supplement. The vehicle

used is the Master Mode Entry 1 command, which is restricted to use in GE=-635

_software enly.

lows:

ey

,{
Mw T
L-' ;/‘ ,‘(‘M ‘

&

b) Change

\

The specific requests which the 645 loader can make are as folw-

a) Return a descriptor word.

LDA 1,DL Type 1

LDQ N,DL

MMEL 64

The N'th word in the descriptor segment (N starts at zero)

is passed back by the Supplement in register A.

Mode, set '645 Process' switch.

LDQ = MVFDB18/FVECTR,18/IVECTR
MMEL 64

FVECTR and IVECTR are locations in the '635 slave memory’

at which the pseudo fault and interrupt vectors are located.

The Supplement changes the descriptor for segment 5 from
slave procedure, slave access, write permit to master pro=

cedure,

The Supplement sets the '645 Process' switch so that if
faults or interrupts (irom the dedicated 645 process GIOC)
occur, the pseudo vectors provided by the user are inter=

rogated (see later discussion on fault and interxrupt handling).

¢) Discontinue interrogation of pseudo fault vector.

IDA 3,DL
MMEL 64

This request is honored only if the '645 Process' switch is on.

The function provided is the ability to have faults interpreted



v

Page 5

by GECOS while executing 'escape' coding (which really is

635 code).

d) Resume interrogation of pseudo fault vector.

LDA 4,DL
MME1 64

This request is honored only if the '645 Process' switch is

on,

When a fault occurs the Supplement checks a set of conditions and reacts
accordingly. The specific checking is shown in the decision table diagrammed
in Figure 2,

An example of the use of this diagram ist fault occurs, and execution mode
at time of fault occurrence is relative, and '645 Process' switch is off,

then follow ACTION #3.

When an interrupt occurs on a device dedicated to GECOS (on an IOC with kl, or on
a GIOC with K2), the Supplement reflects the interrupt to GECOS., When an
interrupt occurs on the GIOC dedicated to 645 process work, the Supplement

checks a set of conditioms and reacts accordingly. The specific checking is

shown in the decision table diagrammed in Figure 3.



Page 6

WD

|

*3UTINOI 9IBUTWII] SAB]S
03 03 pur wsxS8oad 24®B[S 03 UOTIEW

~I0JUf I[NEF IIBITUNWEOD :G# NOLLOV

!

V4L pue 10§
Jou 9IB 10399A opnasd
8I9Sn U] UWOF3IONAISUY

A (3y81x o3 3391 wWoxy pedY) ~ uﬁmﬁma&&:mﬁ WE9 8yl uf Supipury [neg

2AF30®
Vil 103904 uo st
S19Sn 9Y] IINOIXY °*YDITMS SAOCW JTUnN
[013102 nEy 3Yy3 3yo wanl *(T# NOLLOV] ‘ I3ney 92u31In220
uy SUF3IINSII 219y IND20 UBD JI[NBF ®B) opnosd Yo IMs
A0S sassn 9yl s3IBIMEWIS STYI f{3jun V4L pue Q10§ 3aw 31ne3
-10I3U0D Y] BACK °YOJTMS dA0W JTuUn 10399A 3Iney opnasd 198 5
~-10I3U0D 3ITNBY Byl WO UWin], 4 NOILOV] Sissn uf suopionijsul h S§9901d Jo swil 3I®
TTTTT (ava33e ] 579, aAT3BIAI
ur ¢ o2d£1 %9 THKW) 9ATIdeUL e
ST 103094 3IneY opnasd sias( 2pO JInE3
S004D
*3J0 ST YOIIMS ,SS53901d GH9, UOTINIIXY
03 3Ine3J 3YJ 3I097IY
1¢# NOLIOV| "33° U30q 218 S3YDIJMS 9A0W IFUA~T0I3UOD
® jo
g 90UIXINDDO
*3UTINOX I3PUTMIA] IABTS 03 (pe3eynuys 3ujyeq
03 pus ‘meiZoxd oamTs 03 (S9 °pod) sem 1dnixsjuj uB I[FYM PaIIndd0 IInBJ) 3Ine3 oo 121290
o[qnoxy 93BOFUNmUO] :IZ# NOILOV ‘U0 ST YOJFMS 3A0W JFUN-~-JoIjuod UQSH.HQUE.H Jo swiy 3@
(uoy89y uorlIEOTUNUINOD eIntosqy
JO UOTITULISP 99F) SUFINOX IJBPUTWIAIY (pe3enuys 3ugsq POR
a4amv]s 03 03 puw ‘weiload sAmys o3 (99| STA IINEI 10yad B 3IFyYA PII1iInd00 I[nBjJ) UOTINOSXY
9po2) ITqNOI] IIBOFUNUWOD :T# NOLLDV "uo S} YIOJFAS SacuW JEUN~TOI3U0) JINBY
*Z 2an3} 4




Pagae 7

*3UTIN0I IIJPUTWII] IAB[S 03 08
pue weidoxd SABR]S 03 UOFIPWIOIUL

Ady¥ pu®B (10§ I0 V4L Pu® DS
Jou 3ar 103994 3dnaaajuyf

3dni193uT 931ROTUNIWO) IHF NOLLOV opnasd 13sn U} SUOFIONIISUT
"ViEL (0019)
S198Sn JYJ IINDSXY "YOJJMS 3AoW
i Fun~-1013u09 3dnaisjuy ay3 JJo wiIny Vi1 pus DS 2IB I0303A ‘oooxd
" (1# NOLIOV 31ne3J uf Suf3jinsax ai1sy
anoo0 ued I[neJ ®¥) IS SIISN Y3 3dniasjuf opnasd *uo ST GH9 03
§33BINWIS STY3 {ITUN~TOIJUOD IYI
SAOW °YOJIM§ 3A0W IFUN-~]OAFUOD SISSn U} SUOFIONIISUL {a31os {73 ST
3dnizajuy 3y3 uo winl :g# NOLLOV 3dnazszuy
-EELLRY $P71INJ00
ndy pue(ds
axe 103994 3dnaxsjug <99, 3dnaxejur
opnasd siasn uj suoj3zonijsul ug
adnazsjuj ayj siouldl YIoTyM
330 ST YolIMs ,s589001d G¥9,
:Z# NOILOV uo 397A3( Jo
50249 30U3AANDIQ
03 3dnixsjuy ay3 3Iv913yay SODOUD 01 pIIRIFPSP ST
p3xandd0 3dnaasyuy
. I NOILOV YOTUYM uo 99TAS(Qq
(3y3yax o3 I3[ WOII pPBIY)
juswayddngs S0D¥H ay3z uf Sujppury jdnixszul ¢ 92an31 g
( ( (




Page 8

2, The 645 Loader and Associated Routines

When the 645 Loader gets control it has the responsibility of setting up a

descriptor segment for the 645 Process, loading several fixed segments (described
in Figure 4) and all other requested segments (details may be found in writeups on
6.36 and 64.5), setting up a communication region for the purpose of communicating
with the Supplement and the 645 Process segment 'escape', and finally transferring

coatrol to the 645 Process in segment 'init',

Tha fixed segments which are loaded are as follows:

Segment Descriptor
Numbar Description Attributes
‘f 4 Pseudo fault vector at 400, in '635 slave Data

~memory', Segment name is 8fvectr'. 192
words long, unpaged. First 64 words are
the fault vector, remainder reserved for

/‘ ITS pointers for SCU-TRA instruction

"\, pairs. Loader initializes to zero.

/ 5 Describes the assigned 635 slave memory, Slave procedure
unpaged, 1024 word blocks. Information Slave access,
obtained from Supplement (MMEL 64), write permit.,

Segment name is 'memory’.

{

e‘

1 6 Describes the channel mailbox for the Data
| GIOC assigned to 645 Process work.
‘ Unpaged. Segment name ‘zlocl'.

Pseudo interrupt vector at 7005 in '635 Data
slave memory'. Sezmca: name is 'ivectr',
192 words long, unzaged. First 64 words
are the interrupt vector(s), remainder
reserved for ITS pointers for SCU-TRA
instruction pairs. Loader initializes

- to SCU, RCU instruction pairs.

Figure 4. Basic entries in the descriptor segment for a '645 Process'



Page 9

The communication region which the 645 Loader sets up has the following format:

Figure 5.

Address (decimal) Length
within '635 slave (words) Description
memory ',
240 2 Area which segment 'escapé uses to
pass a pointer (ITS pair) to the
argument list.
242 2 Area which segment 'escape' uses to
save control information. 635 escape
coding returns to '645 Process' by
executing an RID 242 instruction,
244 6 Area used by the Supplement to hold
the control unit when the Supplement
has determined that the '645 Process'
should terminate itself.
250 1 Area used by the Supplement to indi=-
cate the fault number or interrupt
channel number (format ARG-~N) causing
'645 Process' termination.
251 2 Unused
)
253 1 Pointer to 635 escape coding )
)
)Set
254 1 Pointer to supplement initiated ter- |) up
mination routine, ) by
) 645
255 1 Pointer to normal termination routinel|)loader
)

Communication Region in 635 Slave Memory.



Page 10

The termination routines, whether Supplement initiated or normal, have the responsi=-
bility for collecting information on machine conditions and writing this infore-
mation, together with a core dump, onto a file (file code CR) in the same format

usad by the simulator in Phase 1.

Segnent 'escape!’

When entry point 'finish' 1s called, termination of the '645 Procass' is effected
by the normal termination routine. Segment ‘escape' gets to this routine by
transferring indirectly to segment 5 locatiomn 255.

tra = 1ts8(5,255,%),%

Escape to perform 635 escape coding is performed by saving the argument list pointer
in segment 5 location 240, putting the escape "number" in index register 7, saving
control in segment 5 location 242, and transferring indirectly to segment 5 location
253,

escape: save
eapbp ap}4,*
stpbp =its (5,240),%
lde”] ap)2,*
sted =its (5,242),%
tra =its (5,253,%),%
return

Further details about the use of escape coding are available in the appropriate writeup

in MSPM saection BE.7





