A SPECIAL-PURPOSE LIST PROCESSOR
by
BURTON JORDAN SMITH

B.S.E.E,, University of New Mexico
(1967)

. SUBMITTED IN PARTTAL FULFILIMENT OF THE
| REQUIREMENTS FOR THE DEG@EE OF
— MASTER OF SCIENCE
. at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
| June, i968_

L 3

Signature of Author

s e c e e

B

Thesis Supervisor

TERLTS, TN e e e e arn o e e o

T

AR et 2

N

Cr N

'A SPECIAL-PURPOSE LIST PROCESSOR
by -

BURTON JORDAN SMITH

Submittéd to the Department of Electrical Engineering

. on May 17, 1968, in partial fulfillment of the require-

ments for the degree of Master of Science,
ABSTRACT

The relationships between data bases, data retrieval,
and sequential representations of dats bases is ex-
plored, A programming language to facilitate the
manipulation of lightly structured sequential repre-
sentations of a data base is described., The language
is imbedded and does not reuse storage. A language
manual and a sample program are included,

Thesis Supervisor: James D, Bruce

Title: Associate Professor of Electrical Engineering

To Professor.James D. Bruce,

and guidance;

-
ACKNOWLEDGMENT

for his interest, insight,

.

To Arthur Bushkln, for many fruitful and 1nteresting

dlscu831ons'
To}Dottie,

es a wife,

for her patience as a typist and her sympathy

B. J. S.
- Belmont, Massachusetts

May, 1968

TABLE OF CONTENTS

Abstract
Acknowledgment
Chapter 1.’ Introduction _
- Chapter 2, Theoretica}499nsiderations
A, Definition of a Data Base
B. Retrieval on a Daﬁa Base
| C. Data Streams
Chapter 3. Overview.of the Language
| A._lStream Manipuiation
B. vString Operafions
c. Désign Considerations
Chapter 4. Description of the Languaée
| A. Supervisory Routines '
. E. Inﬁut-Output Routines
C. Field Finder Routines
D. Sorting Rbutines'
_ E. Miscellaneous Routines
Chapter.B. Conclusions

Appendix A. SPLP Programmer's Manual

Appendix B. Programming Example

A. Field Finder
B. SPLP Program
References

B
N W
- o

15

23

- 30

34
37

41
43
Il
48
54

- .25
.27

66
67
69

e,
~11b.

11c,
12,
13.
4.

152,

15b,
150a

154,
15e.

s

LIST OF ILLUSTRATIONS

Two related subsets of dété.
Examplé of a hypergraph.'
Noﬁ—connécted hyperg?aph.
A hypergraph,

Its graph 6f binary projections.

" Graph of named binary projections.v

Simple chain in the graph of Figure 5,
An example for retrleval.
Hypergraph with ordlnally numbered vertices.
Ordlnally numbered related subsets;
Data stream resultlng from Flgure 9e
Hypergraph of a data base,
Hypertrée from Figure 11a.
Single relation from Figure 11b.
List of data |
A list of n-tﬁpies of data items,
List of data in assembly 1anguage.
Before §6rting.
Step one,
Step two,
Step three.
Step.fOur.

1
12
13
15
-

9

17
21
24
21
25
28

28

28

33

46
49
50
50
51
51

15f,

158.
15h.
154,
153.

Step

Step
Step
Step

‘Step‘

five,

six,

seven, begin merge,
eight, |

nine, sort complete,

- 52

53
53
54

=

.% 71_

/ R CHAPTER 1
INTRODUCTION
The Electrical Englneerlné Department at M I.T. has been
usnu;the Compatlble Time Sharlng System (CTSS)[IJ for some time
in conJunctlon with the admlnlstratlve activities of the depart-
ment.' A programming language has been developed within CTSS in

an attempt to help solve many of the data manlpulatlon problems

encountered in the daily course of departmental Operatlons. It

is expected that the language will grow in power and flexibility

as more experience is gained with it; so far, it has proven to

‘be a useful administrative tool.,

The first employment of CTSS in Eleetrical Engineering

department administration arose in connectlon w1th a need for

_ better information about- the activities of a grow1ng faculty. An

' lnformatlon and control system was devised to meet this need. 1In

this sytem, 2 CTSS context edltlng program, TYPSET[J, is used
10 create and maintain a textual format disc file containing the
departmental.teaching assignments for the cemimg term. The file
is printed using a memorandum generator,'RUNOFF[]J, which is

compatible with TYPSET; the result is a printed listing indis-

“tinguishable from manually.typed matter. This listing is then

duplicated and mailed to the teaching staff of the department for

comment Using TYPSET, changes resulting from these comments are

"inserted 1nto the file in preparatlon for the next mailing. Three

iterations are performed, and by the time the term starts, the

file reflects quite reliably the true activities of department

‘personnel.

| The existence of an accurateidata base encouraged efforts
to obtain other kinds of information from it, A program was
wvritten by an M.I.T. graduate student to generate a list of |
'subJect offerings together with a breakdown of the activities A
: of the faculty and staff engaged in teaching each subJect The
list is compatible with TYPSET and RUNOFF, and is appended to
and mailed with the teaching assignments from which it.is
generated. ' | |

A third list 1s maintained by the department. This is a

_department committee membership list and is updated through
TYPSET, although_it could and should certainly be generated from
the data base, In fact, the programming language described below
is'designed to,facilitate the creation of computer programs to
~ accomplish such tasks. . |
| In the next chapter; some theoretical considerations rele-
vant to data management in general are discussed. Qhapter 3
;ives'a motivation for the language in the light of the theory
‘ and an overview of the system architecture. Chapter 4 deals with
the commands and conventions of the language, and suggestions for
applications and extensions together with concluding comments

are to be found in Chapter 5. A user's manual is included as

Appendix A; and a programming example-appears as Appendix B.

CHAPTER 2
THEORETICAL CONSIDERATIONS

A, Definition or g Data'Base._

In order Lo facllltate d1scuss1on, it will be helpful to
explain what 1S meant by the term data base. A data base will
be defined as ay arbltrary set of symbols D called the data, a

functlon T from an index set I of data types to the pOWer set

~0f D, and a funclion B from an 1ndex set N of zelatlgn names to
a set of relationg defined in cartesian products over certain of
.the indexed subriots 6f data. Formally, a data base is a 5-tuple

(D, l, T, N, B), where

T = T ; 12D '1 1- - (1)
B NeeRaXe for all gsi} - (2)
. ey i | |

" {The Symbols uscd in this chapter for set-theoretic concepts
conform Wifh Cmeon usage[2’3] insofar as possible. Equatlons
referred to in the text will be enclosed in parentheses)
The data types need not uniquely name subsets of data,
since it is desijable to allow a subset of D to recur in a
cante81an-producL, as in the case of a binary relation in T‘AT
':fO? T;=D. For tlhis reason, Ti_Tj does not imply that i=j, and

hence i and j boly name T;. Another way of saying this is to say

. that the function T is not one-to-one. The function B is one to

One, however,'anq hence elements of N unlquely name certain of

the relations in the range of B The‘elements of I may be

- 10 -

,/’ -

grouped in/;quivalence classes by T-] to unlquely name the
subsets of D, but this will not be necessary in the develop-

ment Some examples of data types might be man house, and ear;

examples of relation names mlght be lives in and has owned s1nce.

It is important to dlstlngulsh between what is in the data
~ base and what is not. The elements of D are symbols i.e. names,
representing entltles or objects external to the data base, |
The named entltles are 1nterre1ated via external n-ary relatlons.
which are represented in the data base by B and collectlvely by
B. If iel, then T names a subset of the set of entities; if
neN, then both n and’ B name an external n-ary relation among
“entities, Thus, a data base is a model of reality rather than
reallty 1tse1f and 1t is therefore apprcprlate to examine the -
appllcablllty of the model and to thereby explore its pr0pert1es.‘
Consider ‘a collectlon of real entities which are linked' via
;several n—ary relatlons. In general, the relations among the
entities will recur; for example, the entltles Steve and Sue may -
te related in the same way as the entities John and Joan, 1In
such a case, it is natural-to form subcollections whieh have as
members all of the entitiesvwhich relate to other entities in the
same way. The family of all such subcollections is represented
by the function T in the data base§ the entities in each subcol-
- lection we identify by an element of I, and T maps the element to
Vthe subset.of D which‘represents the subcollection., 1In Figure 1,
‘the syMbols John and Steve are of type man, the symbols Joan and

Sue are of type woman, and certain members of the image Tman

—

are related to certain members of the image T

WOman by the

binary relation is married to which is represented by the edges

between John and Joan, Steve and Sue,

Figure 1. Two related subsets of data.

. fIt will be convenient to represent the existence of rela;~
tions between subsets of data graphlcally. The fact that a

l relation ex1sts between two subsets is all that we are inter-
ested in, aﬁd hence we represent the relations B neN by edges
and the subsets of data T del by vertices, If Bn is ternary,
or worse, the edges beceme "hyperedges" which connect three or

more vertices, In Figure 2, a binary or normal edge connects

- T

Tman and Thouse’ whereas a ternary hyperedge connects Tman’
house* and T ear' The blnary edge represents lives in and the

ternary hyperedge represents has owned since. We will call graphs
with hyperedges "hypergraphs" to distinguish them from conven-
~tional graphs,tQ] and refer to the "hypergraph associated with a

data base,"

Bhas owned since

Thouse'

Figure 2. Example of a hyvpergraph. .

Intuitively, a data base represents something more specific
than just a collection of entities and a collection of relations.

If there exists a totally incestuous collection of entities and

_relations sueh that every subcollection taking part in a rela-

110n in the same way 1is totally 1ncluded in the collection, then
the collection is somehow self—contalned and should pr0perly be

represented by 1ts own data base., Two such totally 1ncestuous

;collectlons should not be represented in the same data .base,

since each 1s a self-contained ObJeCt and no additional meaning
would result from the conJunctlon. Flgure 3 deplcts two such
totally 1ncestuous collectlons; the hypergraph is in some sense

not connected, because no relation ex1sts between any of Tman’

T T and elther of T

house’ “year element’ lvalence, The hypergraph

_ 6f Figure 3, therefore, represents not one data base but two,

(_(,;

- 13 -

P T /
man ear / Telement
B. B 4 |
Plives in has owned since / B .
- . / has valence
/ .
/
L T . I T
C e house"- o / valence
' /!

- Figure 3,‘-N6h-connected hypergraph.

In order to formallze the conﬁectedness property, it w1ll
be useful to 1ntroduce the notlon of a prOJeCthn. Let an n-ary
Jelatlon be deflned in the cartesian product over an indexed
family {T g, JEJ. If.RJ is the relation under discussion, then

J"JéT - ﬁ‘.(3>

For every subset of J, a p;ojection of RJ onto the subset is

defined, “Denqte the projection_of RJ onto K&J by RK.'_RK is a

relation; in particular,

{x (V1) (3t,)t PN Xt ger;

1€J

o Axe X{tg)} . ()
1€KCJ ' ' '
Certain properties of the projection operation are obvious., Since
RK is a relation, it mdy be further projected on subsets of K;
and projection is transitive; if LSK<=J, then the projection

on L of the projection on K of RJ is equal to the projection on

- 14--

/.

"L of RJ. fLis empty, then the projection of RJ on K is the

empty relation; if K = J, the projection of RJ on K is equal

to R;. For an example of projection, let J = {man, house, yeart,

= {2 _Shady Lane,

= {man, house?l, Than = §John, Stevel, Ty ouse

.115 Main Street, 397 Center Avenue}, T car = §1955, 1961%.
‘Then if R o= {(John, 2 Shady Lane, 1961), (JOhn 297 Center

Avenue; _955) (Steve,_ns Main Street, 1961)}, R, = {(John,
2 Shady Lane), (John 397 Center Avenue), (Steve, 115 Main Street)%.

Another prOperty of prOJectlon is that an n—ary relatlon
cannot. always be reconstructed from the set of progectlons on
proper subsets of its index set. For example, the ternary rela—
tion {(A’»I P), (4, 2, Q), (B, I Q), (B, 2, P)} has the same
unary and blnary progectlons as the cartesian product {A BZ:X:

-4, 23Xip, af.

The definition of connectedness for a data base can now be

made precise. A data base is'connected if and only if the hyper-

‘graph associated with the data base is connected, which is true

if and only if the graph of binary projections is connected. The
graph of binary projections is the graph associated with the daté
base after all_n—ary relations have been.replaeed by their binary
projections, Figure'qa depicts the hypergraph of previous |
examples, Figure 4b deplcts the graph of binary prOJectlons

¢btained from the same data base.

o]5..

Biives in

. Bhas owned since

Thouse'

- Figufe La, A Hypergraph.

'Thouse

Figure 4b, TIts graph of binary projections,

‘The concept of a data base has been defined, and certain
of its proberties discussed. It will be our next task to discuss
: an.opefation on the model which intuitiyely correponds to one
which has classically been performed onvdata bases, namcly the

retrieval operation.

B. Retrieval on a Data Base.

Implicit in the discussion so far has been the idca that
subsets of data Ti may and often must take part in more than one
relation to satisfy the connectednesslproperty. By ''taking part"

- we mean that a subset of data is a unary projection (technically,

C

2 union over the projection) of the relation it "takes part"
in. The connectedness property was based on 1ntu1t1ve notions
of what a data base should be. One result. of this property is

that there exists at least one sequence of binary projections of

‘relations Whlch, when represented on the graph of blnary pro-

_ Jectlons, form a chain between any two subsets of data. Since

the graph of binary prOJectlons may not be a tree in general,
more than one such chain may exist, and & way'of.haming chains
is required. ZEach relation is uniouely named by the elements Qf
n, but blnary progectlons of the relatwons nay well not be, since
an n—ary relation has () binary projections. It will be con-
venient to use subsets of I to spe01fy the blnarj projection in

question, and indeed, the set of indices onto which a relation

is projected together with the name of the relation fully charac-

ferize the projection. If B , neN is a relatlon in ><ﬂ? for

)

J<I, then the projection of B, on K&J is specified by n and K

without ambiguity and may be represented by the ordered pair

(n, K). Furthermore, since the relation B, is merely (n, J), we

need not consider relations and can deal only with their projec--

tions, This'shall be our approach. Figure 5 shows a graph of

binary projections named according to this scheme.

- 17 .-

R A

man ear

(kas _owned since,
§man, house})

t\(has owned since, §{ man, yearg)

(lives in, {man, house}) —7\

-<
-2;—-(has owned since, {year,
) T house 3)
house

Figure 5. Greph of named-binary projections,

A chain in the graph of'binary projections may ﬁow_be
Dpec1f1ed by a sequence of projection names. The chain may be
POmpOSlte, that is, 1t may traverse an edge more than once. The
chain mey be infinite and be.spec1f1ed by an infinite sequence of
g(7\ projections; if the graph is'finite, all infinite chains are
vomposite} If a chain is not comp051te, it is 51mple. The

' blmple chain spe01f1ed by the progectlon sequence (llves in

§man, house§), (has owned since, iyear, house}) is shown in

Figure 6.
Tman 'Txear’
"~ (lives in, ~<——(has _owned since,

{year, house})

{man, housey) *‘72__,,,——e— .

’ Thouse

Figure 6. Simple chain-in the graph of Figure 5.

——

- 18 -

The binary projections deflned by a chaln may be combined

-

v

by composition 1nto a single relatlon. This possibility motl-

vates the deflnltlon Of binary retrieval., A binary retrieval

request consists of a singleton (i,{t. §) t;eT;, and a chain of

‘binary progectlons whlch when composed yield a binary relation

in T >(T The result of the retrieval is the 1mage of {t %

under the composed relatlon and is a subset of TJ For example,

1he binary retrieval reouest consisting of (man, {John}) and

(lives in, § man, house}), (has owned since, {year, house}) will

-result in an 1mage set contalnlng the dates s1nce which the houses

John 11V€S in have been owned (Do not draw the conclusion that

John owns the houses he lives in.) More complex procedures are

possible, e.g. logical operations on binary retrievals with the

~same chain termlnus might result in the set- -theoretic analogues

on the 1mages with negatlon applled to an image ACTJ hav1ng the

obvious meanlng TJ-A Slnce compos1te and infinite chains are

allowed binary retrieval is quite Versatlle. It is the case,

however, that binary retrleval is not adequate to deal with n-ary

~re1ations, and is therefore not capable of exploring all of the
‘relations among data, simply because some of the structure of the

| data base may be lost when it is replaced by 1ts binary projec-

tions., A more powerful concept is needed.

A retrieval in the most general sense should involve the

vspe01flcat10n of some data and some external relatlons among the

data together with a rule for transformlng these relations into

another relation which represents the result of the retrieval.

-]9_

The kinds of rules which are allowed specify completely whatla

retrieval is. We .shall assert that a legal retrleval rule may

“only invoke the operations of composition, projection, union, .

intersection, and complementation. The operands may be extennal

‘relations, relations internal to the data base, or data.

A ‘binary ;etrieval is clearly,a retrieval, as are all logi-

“c¢al combinations of binary retrievals. Consider now a data base

consiéting of a single ternary relation.among names, addresses,
and. telephone numbere, and we desire the telephone numbers for
a name-address pair. We would.like to form phe "composinion" of
the innnt relafion (the name-address pair) with the ternary rela-
tion of the datalbase to obtain the (unefy)'relation of the tele-
phone nnmbers. We need a mere generalized notion of compesitiqn

to be able to do fhls,'one that is defined for n-ary relations.

~ Note that the results are not necessarily the same if simple

retrievalsiare used; as has been pointed out. The generalized

* .

composition operation should include binary composition as a

‘special case, and should be such that the application of an n-afy

relation to an m-ary relation should be an (n-m)-ary relation for

m less than or equal to n and unaefined otherwise. Further, the

tuples of the (n-m)-ary relation should be such that when they

" are “combined w1th" some element of the m-ary relation, they yield

an element of the n-ary relatlon. We denote composition of two
relations by juxtaposition as ;s customary for binary relations,

Let'RJ and Sy be two relations

e X, P (5)

T jeg d

- 20 -

keK

/ o se X (e

- -and let some subset of I‘be nonempty and

U{z‘lg UiTgé' U?j[‘k7S |)

Then the comp031t10n RJSK is deflned, and

- {x: (V1)<3t }(tieT; A XitgcR
A thg sg/\Xe Xité)} |) '('8)

jekK

It should 1mmed1ate1y be clear from the 51m11ar1ty of the
deflnltlons that progectlon and, COmpOSlthn are closely related.
In fact, if L&J, then the prOJecthn of RJ on L is merely

R(XT) - ()

ieg-L _

The comp081t10n 0perator is neither commutative nor associative
}Jn general; 1f J-KCLCJ and KCyJ, RJSK and QL(RJSK) are deflned-"
vhereas SKRJ and (QLRJ)SK are not, Other pertinent facts are
that if {3 is the empty relation, then Rj 395 = R; and %PERJ is
.undefined for Jd nonempty, and that R %#% These propertiee
are immediate results of the deflnltlon. -

Cons;der the previous example 1nvolving names, addresses,
vand'telephone numbers. The data base contains one ternary rela-
tion, and its hypergraph is‘shown in Figure 7 tqgether with a

tabulation of the relation, which we shall name call at,

Taddress

Ttelephone

Beali ate: -

(John, 397 Certer'Avenue, 515-2347)

- (John, 397 Center Avenue 515-2348)

(John 2 Shady Lane, 506-1299)

(Steve, 115 Main Street, 5;5-2348)

(SteVe; 597'Center Avenue, 506-1299)

Figure 7. An exampie for retrieval.

‘We wish to ekplore'several kinds of retrieval on this data base

using the five operations and, or, not, projection, and compdsi-

tioh. Since B all at 1S merely (call at, { name, address, tele—
pnone}) as discussed on page 16, we so replace 1t abbreviating
the indices to (¢ ,{n,a,t}). External relatlons which serve as
1nput will be similarly abbrev1ated A

The first retrieval to be considered is binary, and might

be descrlbed as "get all telephone numbers where name is John and

" address is 397 Center Avenue," We construe this to mean

(c,3n,t3)(x,$ ng)(\(C,{a, t%)(y,{ai){ That is, two binary

(-

- 22 -~
/ . :
projectiong of the call at relation are to be composed with ex-

ternal unary relations x and Y, and the results intersected. -
We have that (c,§n,t3) is {(John, 515-2347), (John, 515-2348),
(John, 506-1299), (Steve, 515-1248), (Steve, 506-1299) § and hence
the set to the left of the intersection is 3(515-2347), (515-2348)),
(506-1299)} (The 1nd1ces should have rlghtfully been included -

in the projections but have been left out for brev1ty) Pro-

ceeding similarly, the'rlght 81de of the 1ntersect10n is
$(515-2347), (515-2348), (506—1299)},'so that the result of the
retrieval is $(515-2347), (515-2348); (506-1299)3.

Now let us consider the retrieval verbalized.as‘"get all

telenhone numbers where (name, address) 1s (John, 397 Center

Avenue)." We 1nterpret this as (c,{n,a, t})(x in a%) and conpose

~the call at relation itself with the external binary relation x.

The result is the unary relation §(515-2347), (515-2348) % and is

~not the same' as the result obtained from the binary retrieval.

If we attempt to construct a binary retrieval which will give the

seme results, such as "get all telephone numbers where name is

dJohn and not name is not John and address is 397 Center Avenue

end not address is not 397 Center Avenue," we will obtain yet

‘another result 1n general, in thls case, ‘it happens to be

{(515— §§25§ the telephone number that John and 397 Center Avenue

share with each other and with nothing else, which is of course

_dlfferent from the other two.

The example was designed to show that retrieval in.the

general sense is necessary to perform certain well-defined and

[V

- 23 -

interesting operatlons on a data base, and that binary- retrleval
is not always adequate to perform these operatlons. Rather than

discuss more completely the notion of generallzed retrieval, the

-next sectlon will deal w1th a somewhat dlfferent topic: The'

problems 1pvolved in represent;ng a data base in sequential

- form,

C. Data Streams,
Bushkln[5] has described in detall how a data base repre-
sented by an acyclic dlrected graph can be converted revers1bly

into a sequence of data called a data stream. The acycllc

dlrected graphs which he describes correspond in our model to

hypergraphs containing exactly one hyperedge together with a

well-ordering on the set of vertices {T } of the hypergraph. Each

data subset T is also the domain of a well-ordering, so that the

“elements of the data stream are triples consisting of a datum,

the ordinal number of the datum under the well-ordering on the
data subset to which it belongs, and the ordinal number of the

subset under the well-ordering on all subsets. Figure 8 repre-

‘sents such a hypergraph with ordinally numbered vertices; Figﬁre

9 depicts the ordiﬁally numbered data in each subset (vertex)

from Figure 8, together with the relations among them.

Ttelephone number

3

Figure 8. Hypergraph with ordinally numbered vertices,

address

T (@

—

397 Center Avenue

115 Main Street

(3)
6 2 Shady Lane

(3) T

telephone number.

Figure 9. Ordinally numbered related subsets,

The data base is converted into a data stream by the lexico-
graphic order generated by the ordinal numbers on data and sub-
sets of data applied to the n-tuples of the relation. For the

example of Figure 9, the data streanm which results is shown in

- 25 -

Figure 10. The typographlc form of the figure is not important;

the structure is totally conveyed by the datum-number triples

and by the order of the sequence.

John . - 1,1
'+ 397 Center Avenue 2,1
515-2347 3,1

515-2348 3,2

2 Shady Lane ' 2,3

| 506-1299 3,3
Steve - . 1,20

397 Center Avenue 2,1

506-1299 3,3

115 Main Street 2,2

2152348 ' 3,2

«

Figure 10. Data stream resulting from Figure 9,

If all data bases could in fact be represented by single

.'n-ary relations, then the problem of stream generation from a -

data base would always be soluble by Bushkin's method., "It is
in fact possible to represent data bases of more complex struc~

ture by single n-ary relations 1f a certain amount of artificiality

‘can be tolerated There are excellent pragmatlc reasons for want-

ing to be able to represent a data base by a data stream, so that
artlflclallty may not be too high a prlce to pay. For example, |
in representing a data base in a digital computer, a well- |

ordering is provided on the elements of the representation, since

almost all storage devices are sequentially addressable. If the

.be made ve

- 26'f-

/,

data base jﬁ'represented in stream form, the representation can
y

compact; it is therefore 1mportant to attempt to

irepresent data bases by 81ngle n-ary relations.

Cons1der an n-ary relation' which has ‘been projected onto

_several of 1ts index subsets in such a way that the associated

hypervraph ‘is still connected " Then the result represents a
data base of some sort with rather spe01al prOpertles. The pro-

cess is not revers1ble.1n general; many data bases associated
with n-vertex hypergrephs cannot be so constructeo. For example,
<on81der a 2- vertex hypergraph contalnlng two binary edges., If
the relations which the edges represent are different, then

clearly no binary relation can be projected to yleld the two

distinct blnary relations. It can be shown that it in fact is

,poss1ble to so represent a data base when the data base is

.assoclated with a tree, and that any data base associated

with a hypertree of n vertices can be constructed by projection
from a single n—ary relation of some sort” A hypertree will be
dsfined as a hypergraph which is connected but loses this pro-
perty if any hyperedge.ls deleted Other definitions are possible,

but would require additional propertles of hypergraphs which have

not been dlscussed

We will sketch an indirect proof of the assertion that a
data base representable by an n-vertex hypertree can be created
b) progectlon from a 81ngle n-ary relation over the same subsets

of data. Suppose that some relation Bn§»><T} in a data base
' v i€J

characterized by a hypertree cannot be represented by a projection

R; of some n-ary relation as described above. That is, there is

J

“been a hypertree.

“this fac1lity further by 1ntroduc1ng yet another artifice. If

a hypertree merely by splitting vertices (duplicating subsets)

- et

at least one element that RJ and B 'do not have in common, an
element that RJ must or must not have regardless of the " con-
straints 1mposed by B . This implies that some other relation,

in the data base further restricts RK and in particular, for

‘some subset hie of J there 1s a-relation BmC >< I‘ also in

1EKCJ

~the data base. Now remove B from the data base, and consider

the graph of binary projections.” If this graph was connected
before deletion of B ; 1t-still is,;since K‘iJ implies that any
pair of vertices connected by a binary projection of B are
still connected by a binary prOJection of B Since the graph
of binary proaections is still connected, the hypergraph asso-

cLated with the data base is still connected and could not have

The above result Justifies the creation of data streams

fxom any data base characterized by a hypertree., We can extend

duplication of subsets of data is allowed, then any data base

whatsoever can be converted into a data_base characterizable by

until the hypergraph satisfies the'hypertree property,

An example of the process of converting a data base to a - ;
data stream.is depicted in Figure lla-c¢. In Figure 1la, the
hypergraphvof a data base is. shown. Sufficient vertices have
have been duplicated in Figure 11b to convert the hypergraph to
a hypertree, in Figure llc, the hypertree has been converted to

a single n-ary relation and the vertices ordinally numbered in

/ 5
- 28 -

preparation for the stream generation procedure,

Figure 1la. Hypergraph of a data base.

.

Figure le. Hypertree from Figure Na.

Figure 1ic. Single'relation from Figure 11b,

We have not described how a particular data base is to be
converted into a data stream. The method by which vertices to
'be dupllcated are chosen, procedures for changlng hypertrees to

single relations, and rules for ordinally numbering data and

-.29-.

/

/-

subsets of/;ata have not been our concern.. In the next chapter,
these problems will be discussed in the light of a parficular

implementation: a language to manipulate data streams.,

&

<30

CHAPTER 3
OVERVIEW OF THE LANGUAGE

A. Stream Manipulation, ..
In the context of digital'computation, data bases are

often represented by data streams. One of the reasons for

~this has already been mentloned data streams can be stored

efficiently in sequential dev1ces. Communlcation channels are
often seqnential asvwell,'so that communication of a data.base
is efficient when the data base is in data stream form, .
Unfortunately; a great deal of structure must be artificially
imposed on a data base to obtainva data stream, with the result

.

that the structure often gets in the way and must be modified

_or removed, In particular, it is often convenient to respecify

the order on the collectlon of subsetsr{I‘% to generate "1nverted"

streams; one way of d01ng this is to recreate the single n-ary

- relation from which the stream was generated. Another operation

involves deletion of certain of the data subsets T. from the data

stream entirely, For this 0perat10n, it is not necessary to

2

recreate the n-ary relation; it is adequate merely to detect the

'type and delete those not des1red. The programming.language to

be described in the balance of this the51s was designed to faclll-
tate both of these operations,

One primary facih}tyqof the language is the ability te
recognize and order the data contained in the stream. The order
relations among and within data subsets are partially destroyed

in the stream generation process and must be reconstructed to

/

-~ 31 -

“enable genéiation 0f an inverted stream. How fhe order rela-
tions are actually computed will be discussed later; suffice it
to say that the order on.eaéh sqbsef Ti is rebreéented by a |
‘one-way list which threads through all“of the data in the subset.
"Such a strgéture is éhown.in Fi gure 12, ‘Bach horizontal rec-)

'tangle,symbolizes a block of one or more consecutive words in

the high-speed core memory of QTSS, and represents one element

from a data strean,

T E ?' data item

(

N .

pJ
. | B
; ? 1 ho, datum :
. []) ¢ [<
g P
e [d
e —
1 O, datunm
]) [¢ C
P4 Pl 7
G 5 s
7 1 no, datum
! . ¢ 4
/ IR ’ [
[}
[}
e 'q < _
. [- ¥
Clog ' no, datum e
) 3

'Figure 12; List of'daﬁa.

The leftmost word in the~representation of each stream
élement contains a pointer to the next element and a number signi-
fying how many machine words are used to represent the datum., If

that number'is n, then the next n words contain a bit pattern

which represents the datum in some way. The order on the data

-2 -

is étven by/the list,.tn that any datum reachable from another
datum is in the imagerf trkat datum under the order relation,
The end of the list is signified by a zero. |

- The box 1n the upper left- hand corner of Flgure 12 labeled
"data item" represents a 81ngle machine word contalnlng two
pointers. One p01nter p01nts to the top of the list; the other
points to some element in-the list, That is, a data item points
to = stream element and to the listiof similar stfeam elements;
and thereby indicates the datum, the subset to which it belongs,
and the order in thet subset. A data item~is generated whenever
a stream eiement is found and inserted in’a list, and is used to
represent the datum and the current state of its list. As the
stream is read, data are extracted from the stream and routed te

the appropriate points in the ‘appropriate lists, The data items

~are returned in a sequence matching the,order of the data

stream.,

L]

If stream inversion is to be penformed, thennthe-sequenee\
of‘data items Which was created from the input data stream must
‘be converted into a set of-objects representing an n-ary relation
from which an inyerted output stream may.be generated. This is

accomplished by selecting certain of the data items from the

:sequence and generating a iist of n-tuples of these items., Such

a list of n-tuples is shown in Figure 13, The n data items com~

prising each new tuplevare stOred sequentially and'appended to

the bottom of the llst of n- tuples. In most respects the list is

similar to the lists of data shown in Figure 12, except that

- 33 -

data items rather than data are'stored.

o St st
T ITITIT7
" A A S |
imo. | & | "7 a/g/{
£ A /
o [4TI 7

SN
. --;.\

AN
N
N
AN

o [

s

R
-

Figure 13;_ A list of n~tuples of data items.
The data items in a given position in each n-tuple must
point to data in the same list, in order that the lexicogrephic
crder used to generate the output data stream will be well- deflned.
The lexicographic order is generated by a multiple=-pass sorting
operation on the list of n-tuples. The list of n-tuples is first
sorted according to the order of the list ef data pointed to by
the rightmost component of each n-tuple. When this has been done,
the next component to the left is taken and the list of n-tuples

resorted according to the list of data pointed to by that component.,

- 34 -
'/-\ .
The sortin ‘terminates_when the leftmost components of the
n-tuples have been sorted on, and the output stream can now be
generated. Note that the new order relatlon among data subsets

is conveyed by the left-~ to ~right order of data items w1th1n each

.n-tuple, whereas the order relatlon within each subset is con-

-veyed by the llStS of data p01nted to by those data items,

Creatlon of the output stream from the sorted list of
n-tuples is ‘accomplished by outputting each n-tuple from the llst
in the new order spec1f1ed by the list, Spllttlng each n-tuple
into its constituent data items., "Each output of an n—tuple

results in a transfer of program control to one of n. locatlons

in the program, depending on the most s1gn1f1cant component of

the n-tuple which changed since the last n-tuple output thls

facilitates certain kinds of computat;ons ‘which may be des1red

just before and during the output process. For example, the

stream can be outputted in an "outline form" similar to that shown

in Figure 10" through the use of this facility. Appendix B shows

an example of such an output specified in the language.

B. String Operations.

It'is often the case that data streams are not actually
represented by triples of data.and ordinal numbers but by strings
or sequences of strings. Strings are commonly used to represent
data, and in fact it may be difficult to conceptually separate
the two ideas in some situations. Strlngs are in fact more

complex than the data whlch they represent in that a datum is a

- 35~

symbol whe%ﬁas a string is a sequence of symbols. The datum

John might well be represented by the string 'John," but tJohn!

is a sequence of symbols (J,0,h,n) and intuitively contains

somewhat more information., It is meaningful to say that }dohn'

‘contains a iJ' -but in no sense does the datum John contain any-.

thing., We shall represent data by strings, and Operate under the.

‘assumption that all data’ are represented by strlngs both 1nter-

nally and externally. Thus, the bit patterns representlng data
in each data 1tem are strlnes (i. e., blb patterns representlng
strlngs) whrch are 1nterpretable by the computer..

‘The ordinal numbers contained in each stream elenent could
also be represented byﬁstrings, or perhaps by integers (vit

patterns representing integers). The most 1nterest1nv case,

however, occurs when one or both ordlnal numbers are represented

by some computable property on the strlngs which represent the

‘data. The ﬁamlllar alphabetic ordering process applled to a set

of strings results in a natural and intuitively appealing order

on the set; this order is in fact a well—ordering and can be

tomputed from the set of strings and an order relation on the

‘vharacters. Similarly,. the subset T to which a datum repre-

sented by a strlng belongs can often be computed from the context

©Of the string; if a name string such as 'John'! always appears in

a particular way relative to other strings, then that property
can be used to characteriée the set of all name‘strings. This
is nothing more nor less than a parsing operation; if the input

strings were English text, the problem might be to recognize all

- sidering the kinds of inputs that are of interestﬁ

- 36°=
of the verbys, nouns, prepositions, etc. Whethen a sfring is
classifiable by context or by some other procedure is pertinent;
we shall stipulate that theiinput strings representing a data
stream must be reducible.by a context-sensitive parser to data

items, This is in fact not a very restrictive condition, con-

As an example, let a telephone directory'Serve as input.:
Assume that every name contains only letters, every address
begins with numbers and contains both numbers.and letters, and
every telephone number contains only numbers. The lines of the
telephone direetory can be parsed into names, addnesees, and
telephone numbers unambiguously by requlrlng that a telephone
number have no right context and contaln seven numerals, and

then that a name have no left context and have one Or more nun-

" bers as right context. The names, addresses, and telephone num-

bers can then be ordered aiphabetically, by tableilook-up, or by

some combingtion of these two operations. Thus, a telephone
directory in natural form can be interpreted a2s a data stream by

the language, and inversion and subsetting of that data stream

“becomes possible,

The strings wnich represent data in the input must be plaeed
in the appropriate 1iets of dafa items at the appropriate points,
in order that the data items resulting from the paree will be
defined, One technique is to let every list of data be wholl&
maintained by the parser, and this is in fact done, The parser

consists of a set of independent subroutines, each of which

- 37-~

maintains one or more'lists of data, The subroutines fetch

input strings from.a standard location and update the appro-

priate lists, returning data items if the input string was

T e

successfully parsed.

In the next section, some considerations relating to the

design of the language are dlscussed The'deseription of the

: lanouaﬁe up to now should nmake clear the fact that it 1s designed

to 1nterpret and manipulate loosely spec1f1ed textually for-
matted lists. The name of the languade is SPLP, for Spe01al
Purpose List Processor, prlmarlly becauoe the language is
highly optimized for ‘this task and is unsuitable for general-
purpose'eomputing, and because it operates en 1ists. The
lan@uage is not in fact a list process1ng language as the term,

is commonly meant but several 1ssues that arose 1n the de31gn

. of SPLP are pertlnent to llSt processing languages.

~

Ce Design'Considerations,

The SPLP language is imbedded invMAD[6] and consists
entirely of subroutines,. In this respect, it is similar to
SLIP[7]. The reasons for imbedding were several. First,'an

imbedded language is easy to writej most of the onerous details

“are handled by the parent eOmpiler. Second, the language is

easy to modify; the subroutines may be ihdividually compiled, and

new features may be added to the‘language easily, either by intro-

ducing new subroutines or modifying o0ld ones. Third, the com-

bination of the parent'languaée and the imbedded language is

- 38..

Uoually more powerful than elther language alone,

In selecting a lanvuage in. which to imbed, thehmost
Valuable characteristic sought is simplicity, 1In particular,
1enguages which do extensive autozatlc type conversion or main-
'tdln large run-time stacks in avallable storage are often unsuit-
able. There 1s no convenlent fac111ty whereby an 1mbedded
1hnguage can determlne what the parent language has done to
Atpuments or to avallahle storage; the best solutlon is to
lbed in a language which modifies nelther. " MAD and FORTRAN are
Very good in thlS respect

All of the llsts generated by SPLP from the 1nput stream

- ale stored in high- speed core. Since the lengths of the items
ale varlable, reuse of storage poses a difficuit (and class1ca1)
<PTOb1em. Happlly, the special nature of the appllcatlons for
which SPLP was des10ned enabled a s1mp1e solution., The stream
Inversion operatlon involves reading the entlre input stream,
S0prting the llStS obtained, and then generating the output strean.
Viltually the only demands for additional storage space are made
dullng the input process, but no recovery can be made until the
Output process begins. For this'reason; it was decided that no
.Eavbage collection scheme would be 1ncorporated into SPLP since‘
Vopry llttle Or no reuse of storage would be possible.

One of the more 1mportant reguirements imposed on SPLP vas
that it be very efflclent ~ The language is designed to facili-
tale a class or operations which are commonly performed by admlnls—
trutors and others in the daily course of affairs, and the econo-

mics of the situation are such that a small increase in program

o~~~

| - 39-
/ ;
efficiency/;ill result in a fairiy large saving in adminis-
trative cost. The efficiency requirement motivated several
decisions relatlng to the de31gn of the lanﬁuage.

Flrst,_very little checking for programmlng errors is done
by the language. In partlcular, calling sequences are usually
-not checked either for content or for length, It was felt that'
the addltlonal overhead required for such checklng vas excess1ve.
Sincde in most 'SPLP subroutine calls the fact that an argument is
zero has a well deflned and natural 1nternretatlon, a highly
likely source of possible programmer error is avoided: the
problem of uninitialized.arguments.

| Second, most subroutines taking variable length calling
sequences obtain the length of the sequence from the first argu—
vment. That is, 1f n varlables are to be passed to such a sub-
routine, then the first argument in the callwng sequence is n
.and the variables make up the next n arguments, making the call-
ing sequence of length n + 1. Once again, it was felt that one
calling sequence length processor call for every subroutine call
was excessive, o

Third, the SPLP subroutlnes are written in assembly language.
This fact enables efficient use to be made of index reglsters in

the operations involving lists, and allows maximum utilization of
machlne resources in general

In summlng up, SPLP consists of a set of assembly language
subroutines callable from MAD programs. Operations on input

strings result in lists’of strings which can be sorted and outputted

- LO -

in a prescribed sequence. In the next chapter, the subroutlnes
which make up SPLP will be dlscussed in detail, A further
discussion of each subroutine from a programmer's p01nt Oof view

may be found in Appendix A. A famlllarlty with CTSS is assumed.

- 41 ~

CHAPTER 4
DESCRIPTION OF THE LANGUAGE

A.. Supervisory Routines.

Three.SPLP subroutines perform the necessary supervisory
functions fdr the language. The first of these, BEGIN per- .
forms certain prellmlnary tasks and- must be the flrst SPLP sub-~
routine called in a program. 'BEGIN first leaves multiple tag
mode and sets one level of interrupt, making'the'interrupt

return the entry point of the closing routine ENDOUT. This
| allows program escabé to CHNCOM, rather than DORMNT, to be
initiated from the cénsole. BEGIN then fetches and saves the
current command‘buffer, and sea}ches'thé command buffer for the
presence of the argument (DBUG). If (DBUG) is preseﬁt, the.
loader is called to load FAPDBG Memory bound is fhen extended
-£to the top of core, and the.complemenf of the next available
. storage location (i.e., the o0ld memory bound) is placed in
index register 7. Index register 7 nust élways contain the
complement of the next free étorage loaction duriﬁg.executidn.'
This permi%s any SPLP subroutine requiring free storage to ob-
tain it by referencing and then ﬁpdating‘that index régiéter,
checking to make syre that the top of memory has not been
reached. A

The-élosing routine ENDOUT first closes all active files,
- It then restores the interrupf status to that which existea
prior to calling BEGIN, and calls CHNCOM with an argument of 1

to preserve the core image for debuéging purposes. It is

- 42 -

thefefore pessible to insert one or more SPLP programs in a
macro procedure, | |

| A standard error routine ERRORS is provided. ERRORS
determines the_type of calling ﬁ;ogram, and treats calls from

MAD differently from FAP calls. . From MAD, the call is of the

~ form "ERRORS, ($CODE$,~L-)"; $CODE} is a 6-letter error code

and L is an optional argument, ERRORS'prints'a,line on the con-~ |
s0le centaining fhe code and the location‘from which the call
occurree If.L is present, confrol then transfers there;'if if
is absent, control transfers to ENDOUT, FAP calls are handled
blmllarly, if the call to ERRORS was of the form

'TSX ERRORS, 4
PZE MMMMM,N-,L-

~then "NMMMMM" is the error code printed and control transfers

to.L or to ENDOUT if L is not present or zero,
The superv1sory routlnes contain two entry points to
which transfer is not permitted, The first of these, COMBUF is

a twenty-word buffer which contains the current command buffer

at the time the program was called. The other is named REALOC

dnd is a 130-word “workspace! in which string Operatlons are per-

‘formed. The workspace is treated in many respects as a data

item, and can generally be operated on by any SPLP subroutine

- except the sorting operations as if it were a data item., Neither

COMBUF nor the workspace should ever be referenced directly from

an SPLP main program.,

| - 43 -
‘/. .

B, ‘Input- utput Routines.’ |

Subroutines are avallable 1n SPLP for inputting and out-
puttlng strings to and from elther line-marked disk files or the
console. Lines from the console can be read by READZ into the
workSpace or into available storage as data items, and either
the workspace or an arbitrary sequence of data items can be
written on the console by WRITEZ. The inputs and outputs from
these two subroutines are'in 12-bit mode, and the console read
routlne recognlzes the standard 12-bit erase and klll charac-
ters '7#' and ‘e!,

The disk 1nput output routines use double bufferlng for

,read operations and - triple buffering for wrlte Operatlons. Up

to three flles may be Open simultaneously for readlng and three
for writing., Thevworkspace may either be read to or written

from, and sequences of data items can be written in files. Lines

cannot be read from disk files directly to free storage,

The files read and written.are of line-marked format and
must have been opened by eails to one of six opening routines.
ROPEN1, ROPEN2, and ROPEN3 open files for readdng, first checking
to determine whether a file has previously been opened by the

same call, If so, the flle is closed if it is still open and a

- check is made to see if the new file to be opened for reading

exists, If the new file ex1sts, it'is opened for reading; if it

does not exist, then a new file first name is requested from the

"console and the pfocess repeated until a satisfactory name is

obtained., The first time that each particular opening program

ie called, two buffers are obtained from frece storage,.and every

~

-447

.,flle opened by that program at any later tlme is. a551gned the

same buffers, Lines from flles Opened by ROPEN1, ROPEN2, and

ROPEN3 are read sucee881vely into the workspace by calls to
READ1, READ2, and READ3, respectively. Note that it is never
necessary to explicitly close a file, ' ‘

The subroutines concerned with file wrltlng are simllar

- in many respects to their readlng counterparts, WOPEN1, WOPEN2,

}and WOPEN3 open files for writing and assign three buffers to

each, The files to be written are checked for nonexistence,

and if a file already eiists, the user is asked whether or not
the file shodld be deleted. If the answer is yes, the file is
deleted and writing may proceed; anything else results in a
request for a new f11e name and a repetltlon of the nonex1stence
check. Only permanent, temporary, or secondary mode files can

be deleted. In other respects, WOPENI, WOPEN2, and WOPEN3 are

similar to ROPEN1, ROPENZ ~and ROPEN3, WRITE1, WRITE2, and

"WRITEB write either the workspace or a variable- length sequence

of data items in the apprOpriate disk file, and are similar to

WRITEZ, the console writing subroutlne, in other respects.

C. Field Finder Routines,

Subroutines may be written in FAP to parse lines in the
workspace into data items., Few general rules can be\given which
apply to these subroutines. The context sensitivity requirement
of the previous chapter insures that the parsing can be done if

the context is available, but- it may be that the required context

-45..

is not expyécitly bresent, since the workspace contains only
one line of input., Assuming that the werkspace has been parsed
and that a data item has been generated, the problem of insert-
ing the data item in its list in‘the correct order remains.
These problems can be qulte dlfflcult, and deserve and require
a programmer's best efforts¢ , J

Certain conventions have been eStablished'for field findersw
relatJ.nrT to communlcatlon with the rest of SPLP Fleld flnders
must return data items, and lists of data must be structured 1n
specific ways. In addition, it is convenlent to pass an argu~
ment to each fleld finder which spe01f1es a location to be
transferred to in the event that the llne could not be parsed

The list of data must ‘be structured in the general fashion
‘shown in Figure 12, An additional machine word of information
not shown in that figure must be included at the left of each
element of the list. This element is called a "sopt link," and
1s used in the sorting precess. Flgure 14 shows a three element.
Llst as if it were written in FAP; the FAP instructions of the
figure must of course be generated by the fleld finder. A data
.Jtem is shown in the box to the.left of the figure. Note the

twelve-bit strings in the BCI statements;

PZE

" BCI

L .
[PZE B,,A]
(DATA ITEM)

. . PZE
A PZE
BCI
BCIL
BCI

PZE
BCI

L]

- L6 -

Eﬁuta

——) %
“- v -
—

>

1A17T

1
1,#EINID

(SORT LINK)
(MIDDLE OF LIST)

(DATA)
.(DATA)

(SORT LINK)

~ (TOP OF LIST)

(DATA)

(DATA) -
(DATA)

(SORT LINK)

(BOTTOM OF LIST)"
(DATA)

~ Figure 14. List of data in assembly language.

-

- L‘_?..

The data item sliown in Figure 14 points to the top of
the list (A) and to Le element just inserted (B). A points to
B, Bpoints to C, and ¢ contains a zero pointer indicating the

end of the list, Tho number of machine words of data in each

-element is stored in ()¢ decrement of the words A, B, and C.

The sort llnks p01nt Lo themselves.

The situation of Figure 14 might have resulted from a

Ca11 t° a field finde¢r named ABC. Suppose the call to the field

finder subroutine ABC was "ABC,(Z,L)". The data item'depicted

in the figure -would huve been returned in 2 if the field finder
had found an approprinte string in the workspace, extracted the
string 'Data' from it, and placed the strlng at B in the list,

If the string in the workspace was not apprOprlate, i.e., not .

parsable, the field ander would have returned to L and Z would

have contained zero.,

More than one duta item could be returned from a 81ngle
field finder. . If somo data items were found and others not

found by such a multiple field finder, those data items not found

could be returned as ucroes, If ABC were such a multiple field

finder and took threo arguments, the call might be “ABC.(Z1,72,

u3;L)"- The calling conventions for field finders need not

' rigidly adhered to, and are merely introduced as guidelines. The

Inclusion of the falsc return label is highly recommended, howevers

-

Included in the programmiﬁg example of Appendix B is an

example of a field finder written in FAP. A careful study of the |

program should reveal its important features. Recall that the-

- 48 -

next a#ai1. le storagevlocation is contained in complement form

in index register 7,

D, Sorting Routines. : .

The'sorting process was described in»Section B of Chapter

3. The algorithm used is somewhat unusual ‘and deserves further ‘

comment. The sort is essentlally of the bucket variety, and
moves. p01nters to create the buckets Whlch are then merged in
preparatlon for the next pass.

Consider a list of n-tuples of data items and a list of

data as 1t might have been generated by a field finder. During

the bucket generation phase of the sort "the pointers from the
data 1tems in a particular p051t10n in each n~tuple are followed
to the list element, The address of each n~tup1e is stored

indirectly in the decrement and then dlrectly in the address of

“the sort llnk associated with the 1lst element pointed to, The

;flrst time a sort link. is so modlfled both the decrement and the

address of the link contain the address of the first n-tuple.
Thereafter, the last n-tuple looked at is made to point to the
current n-tuple and the current n—tupie address is placed.in the ,v
sort link., The result is a series.ofdlists of n-tuples;vthe top
and bottom of each list is pointed to by some sort'link in the
list of data., When the bottom of ‘the list of n-tuples has been
xeached the top of the list of data is accessed and the merging
phase beglns. The decrement of the first sort link becomes the
pointer to the new list of n-tuples; thereafter; the decrement

of each sort link is stored indirectly in the address of the

- complete, °

- 49 -

previous sort link until the bottom of the list is reached, at

vhich time a zero is stored indirectly in the address of the
last link. The merge phase reselts'in a new list of n-tuples
sorted according to the order.of the list of data, The cycle
is repeated on each position ef'the n-tuples until the sort is

' Flgure 15 symbollcally summarizes the operations involved.,
The pairs of boxes represent machlne words. The-letters repre-
sent pointers, and the dashes represent 1nformat10n not used in
the sort. Each of the parts of Figure 15 represents one stage
in the sort algorlthm, and the clrcled letters 1nd1cate the

chenges at each step.

]]
Al - wt o~
{ ‘ -
W
{.
.]]] :] ' o
A: Bi2|-t1-~|-1w PBiw-1 x|~]| data
N P4
. X3
. . <
i] 1 [[} ’
B: [Cit2|-t-]~1x Fgix-1 g1~ data c
) P
] I
C: [@gr2|-1- ~§ W
List of n-tuples of data items | List of data

Figure 15a, Before sorting

//
Ai-/
i 1 1
Bi2a|-1-}=-1y
' ' I
cial~-!-|-1x
] I ! .
giaj-i-|-jw

- 50 -

|
Wi -
we
. C
¥ T P
®w-1| x | = | data <
Xe
[
LI] 2
gx=-1@!~|data .
: -

(Store A indirect in the decrement of w's sort link,)

o

L}
1
=

gia|l-

Figure 15b. Step one, '

L
W~
o ws
1 I)
Ag@ X1 -|data ¢
P
x: '
[y
T I B4
-1 ¢! -|data ¢
P

(Store A direct in the address of w's sort link.,)

"~ Figure 15c,

Step two.

=3
I

- 51 ;

wil ~
we
T T ' §
Al A Axf - | data
X
: I
T] ’
®px-1 ! - | data 5

B indirect in the decrement of X's‘sort link,)

Figure 15d, Step three,

i I I
Bia2a|~-t=-]~-1w
] 1 1
cCi2l-i~-|-Ix
.l- 1 \
graf-i-|-ty

(Store
|
Af-
1 I T
Bla|~i=|-y
[} { T .
Cla|-i-|-1x
: . |
el -] Ts

[

L el

W
. ¢
T T]
AlAlx]|=~]data -

- X3
TSy —$
BIBY g! - | data p
?

(Stpre B direct in the address of x's sort link,)

Figure 15e,

Step four,

A

B

T T
Cia2|-1-[=-1x
1] |
gia[-1-[-1u

-.52..

T

wi -
' ws |
o C
T T] —
AjA[x!~]|data
—

X

i T 5
BiB|@!~-]data
—

(Store. C indirect in the dec'remént of w's sort .li'nk.-)

Figure 15f, Step five.

Ai-

I] i
clal-t-]~-1y
] 1 T
cClaf~-1~|-ix
gizl-i-]-Tu

I
W=
7] —5
A;@ Xj{~-|data
J
Xe

(
] |)
Bi!B|gl-]|data
]

. (Store C direct in the address of w's sort link.)

-Figure 15g., Step six,

- 5} -

} .
®f- wi-
f\
W 3
(4
| 1 T I p)
A: [Cl2|-1-]-~1w AjC|x|~|data
<
X3 ;
T T i | T J)
B: [Cla|-i-|-1x B! B[#!~| data
] . —’
T i
C: [Zla|-t~]-twl| .
(Store decrement of w's sort link in top of list,)
Figure 15h, Step seven,'begin merge,
li 1
Al - W, -
'C;x' | : we
1 I T 1 1 ()
Ay |Cla|-t1-]-1yw AlCix|=~]data
. .) .
X:
. i <
| T T ~ I [J
B: |Ci2|-t-]-1tx : IBIB[g!~]data ¢
] | S

’ T T
e Ble|-i-]-tw
. (Store decrement of x's sort link indirect in w's sort link,)
Figure 15i. Step eight,

- 54 -

1 ¥ f ‘ I |3 S
Ay |Cl2|=-1-|~-!w AlC|x!-~]data p
_— }).
X
[I [‘ . T I - *{
B: |[@Dia|-i-]|-1x BIB|g!~]|data .
. ' ‘ N RS . P)
T] i :
c: [Bla|-1-|-1w]

(Store zero indirect in x's sort link;)

Figure i5j. Step nine, sort complete,
BE. Miscellaneous Routines.
, Two subroutlnes in addition to those descrlbed above pre-

'sently exist in the language. The flrst of these, QUOTE,

benerates a data item from 1ts arguments each time it is calledo_ '

A strlng from MAD can thus be converted 1nto a data item. The
‘second subroutine, EQUALS determines whether two data items
are equal, Other subroutines will be needed to 1mplement
arithmetic, string pr006831ng, and list processing capabllitles,

and are discussed in Appendix A and in the concludlng chapter,

- 55 -
CHAPTER 5
CONCLUSIONS

The SPLP language as dlscussed above is 1ncomplete in a

number of respects. Facllltles for arlthmetlc, string pro-.

: cess1ng, and list Operations are planned, Arithmetic Operations

will probably be aCCOmpllShed in MAD, with convers1on routines

provided in SPLP to transform strings to and from integer or

real numbers, String processing of various kinds can’be per-

formed in the workspace, and if a powerful enough capablllty is
avallable, the parsing operations involved in extractlng the
data from the input strlngs can be largely performed by the
strlng processor. What is needed is a versatlle string SUbStif.

tutlon subroutlne. The list Operatlons needed in SPLP are

_ several. It should be poss1ble to create lists, append to

them, insert elements, and so forth, Erasure should not be
needed, It should 21ls0 be possible to search lists for the

existence/of data 1tems.‘ These facilities should be easily

incorporated,

Often it is desirable to "lock" data for privacy. String

enciphering and dec1pher1ng routines are planned for SPLP; they

- will permit a user to deny access to certain data by unauthor-

- ized users. The access control problem is an important one in

any data management context; the problem of controlling access

'to relations in a data base is Stlll unsolved.

The SPLP language is a relatlvely pover ful instrument for

applications involving data streams, The data stream concept
“is.quite general and describes many real information structures.
Although SPLP was conceived in response to a partieular require-
ment, the language is not blased toward 1ts current applicathns,
except in the sense that efflclency con31deratlons have dlctated
that checklng be kept to a minimum, =

Many problems of a theoretlcal nature remain unsolved,
First, the problem of efficient implementation of a data base in
a particular hardware conflguratlon is presently quite 1ntractable.
Questlons relating to the de31gn of hardware for data management
‘may well be more capable of solutlon. Perhaps the most effi~
cient kind of machine for data retrieval will employ a very large,>
slow random access memory. A further questlon centers around
-determlnlng a measure of the information content in a data base"
an answer to this questlon is necessary if a meanlngful metric
of implementation efficiency is to be found. Finally, the prob-
-1em of'parsing and ordering data strings from lightly structured
textual data streans is important"a language of some kind is
needed to allow speciflcatlon of the syntax of the strings and an
‘order on each element of the syntax in a concise and meanlngrul

W2y,

- 57..

APPENDIX A
SPLP PROGRAMMER'S MANUAL -

Listéd below are the commands of SPLP. Commands marked
with an asterisk are not yet implemented; Argument types.aré
denoted s&mbolica]ly as follows:

. Z:‘Dafa item .

L: Statement ‘label variable
N: Integer variable
F: Real variable
B: Boolean variable
" P: Password '
It is strdng]y suggesfed that tﬁe MAD declaration “NORMAL
MODE IS INTEGER" bé insefted in SPLP programs to prevent
unexpeéted_mode'conversion. No SPLP :subkoutines recognize
MAD "block -notation"; the notation "21,22(...ZN" which
<;L\ appears below signifies_that the argument list is varlable
| in length but must be specified at'compife time. o
BEGIN.
Mu;t be the first éxecutable_ function In any SPLP
‘ - Program. BEGIN extends memory bound, sets. one -level
of interrupt, and saves the éur}ent command buffer,
lf.'(DBUG)' is in the current command buffer, BEGIN
calls the loader to load FAPDEG.
ENDOUT,
Closes ali active'- fileé, ‘resets one level of
—

Interrupt, and'ca]js the supervisor via CHNCOM,

" 58~

ERRORS.(sMESS$,¥Lf> |
Prints an efrer message ef the form '"ERRORS CALLED .
FROM ABSOLQTE LOCATION (LOC),' CODE MESS', Only the
first six characters of MESS are printed. ERRORS then
transfers control to L if present, otherwise to

ENDOUT. Numeric ‘codes.are used for calls internal to

SPLP and should be avoided,

READO.(Z,L)
| Causes a line from the console to be placed in Z. |f .
Z=-0, the line is placed in the workspace. If not, a
new data |tem Z is created |n free storage contafning'
the |nputted]lne. If an empty tine (1. e., a cérrlage_.

“return) is typed, contro] transfers to L

WRITEO.(N,ZI,ZZ,...ZN)
" Causebs data in Z1 through ZN to be written on the

~console. If N=0, the workspace is written,

ROPENI. ($NAMELS, SNAME2§)

ROPENZ.($NAME1$‘$NAME2$)

ROPENB.(SNAME1$)$NAME2$)'
Open files for readfné. l% $NAME1$=0, It wlll be
requested; if $NAME2$=Q, it will be assumed $(MEMO)S$,
Files opeECd by previous calls will be closed, so that
a maximum of three files may be read simultaneously.

“If a file to be opencd for reading does not exist, ‘a_

o~

- 59 -

/
j
/

ni% file first name will be requested.

READI. (L)
'READ2. (L) . .

READ3.(L) ‘
Read one line from the llne-marked'.file, last opened
" for reading by ROPEN1, ROPEN2, or ROPEN3 respectively.
The line Is put iﬁ the workspace. End-of file- Eesults

in a fransfer tb L.

wopENl.(snAMEi$,$NAM52$)-
WOPENZ:($NAME1$,$NAME2$)

WOPENﬁ.($NAME1$;$NAME2$) |
Open files for writing. If S$NAMEI$=0, it will be
requested; if $NAME2$=0, it will be assumed §(MEMO)S.

Files opened by'prevfbus ca]]s‘Will‘be closed, so that

a maximum of three files ‘_may | be written
simultaneously. If a file to be opeﬁed for writing
already exists, a request to delete-i; wi]l- be made.

If the request is granted, the file will be deleted;

1f the request i$ denied, a new file first name will

bé requested.

WRITE1.(N,Z21,22,...ZN)
WRITE2.(N,Z1,22,...ZN)

WRITE3.(N,Z1,22,...2N)

- 60 .-

Cause data in 2z1 " through ZN to be written |n
TIine-marked format as a single line in the file last_
opened for writing by WOPEN1, WOPEN2, or WOPEN3,

respectively. I'f N=0, the workspace is written,

*GET.(Z,1)
Placés'the'wotkspace in Z. If the workspace is empty,

control Is transferred to L,

*PUT.(N,Z1,Z2,...ZN)
Places 71 through ZN in the workspace. |If N=0, the

workspace is cleared.

- *SAVE,.(N)
Saves the workspaée in a temporary buffef numbered N
(N .LEO'7).

*RESTOR. (N)

Places the contepts of the Nth temporary buffer in the

workspace (N .LE., 7).

*B=SCAN.(21,22,L5
| Scans Z1 for an oécurence o% Z2. If 21 or Z2 =-0, the
workspace Is meant. If an occurence of Z2 is not found
In Z1, cdntro] tranSfe;s to L and B will be false. |[f
an occurence fs.found,.B will be true and a normal

returh wlll be taken, If L=0, a normal return will be

-6l

taken in any event.

B=EQUALS.(Z1,Z22,L) ‘
Cheécks for equality be tween Zl’ana 2, If 71 or 122
=;0, the workspace fs ﬁeant. lf' the two are not
.edhal, control'tfansféré to L and B will be false, |If
the fwd are eqpql, B will Be true and a-normal return

S will be.taken.;lf L=0, a normal feturn will be taken

“in any event,

*B=CHANGE. (21,22,%3,L).

6Hanges the first of the longest occurences of Z2 1in
the'WOrkspace fo Z3, The first occurence of Z1 iﬁ- 2
stands for zero or more characters‘.ln the workspace
'énd may or may not appéar fﬁ Z3. If Z1 does not occur
in Z?,'It_is ignored and stands for Itself in Z3. |If
21?0; it Is ignored. If no occurence of Z2 .In the
workspace is found, control transfers té L and B will
be false. In this case, no substitution takes place,
_If an occurence is found, Z3 . replaces Z2 in the
workspace and a normal return is taken with B true. ‘
lf L=0, a normal return will be ﬁaken In any event, |
'A few examples might be helpful. In the followling,

b stands for blank. The contents of 21, 22, and 23 are
given; and the workspace is shown before and after the

command.

- 62f.

Z1: §

22: $,B

Z3: :

Before: Jones,BA.}C.
After: A.BC. .

Z1: s

Z2: $
L3: $P

.Before: A.KC.

After: A.BC.B

Z1: $
Z2: ,$%

23

Before: Jones,BA.BC.
After: Jones ‘

Z1:

22:

L3: A.BC.B

Before: Jones
After: A.BC.PJones

If D contains 's$', DCB contalns '$,B', DB contains
Y$b', and €D contains '.$', the above command sequence

can be implemented as

SAVE.(1)
CHANGE. (D, DCB, 0, ERR)
CHANGE. (D, D, DB, ERR)
GET.(FIRST,ERR)

RESTOR. (1)

CHANGE. (D, CD, 0, ERR) |
CHANGE. (0,0, FIRST, ERR)

FINDER.(Z1,22,...Zn)

Is a field finder of n arguments. The workspace 1Is

parsed, and n data items Z1, 22, ...In are created in

.free storage and inserted in the appropriate lists, If

any Zi=-0, that data :item Is not created in free
storage. If the workspace cannot be parsed

successfully, control transfers to L.

- 63-.

IN, (N 1, zz,...ZN)

— Generates a vector contalnlng the. deta specified by
the Zi. A1l calls to IN must have the same numbef of
arguments and hence the‘same N, until a call to O0OuUuT
Eesults In a normal refurn.

SORT, (N, Zl ZZ,...ZNX
, Sorts the vectors generéted by sdccessive calls to IN
in lexicographic order. N and the number of aréuments
must agree'withA . The sort only takes place tf the
elements of the vectors generated by lN are the result
Aof list generatlon functzons and If the arguments of
IN-are in fixed order, Otherwise, the result of SORT
'(:; 4 o 'Is undefined,
OUT.(N,L1,L2,...LN)
Oupﬁuts the vectofs sorted by SORT to the N erguments
of SORT, one at a time. Successive vectors are
. : outputted via repeated calls to OUT. Control s
. transferred to the L which corresponds to the leftmost
X argument of SORT which changed-sinceethe,ldst call to’
OUT. When no vectors rematn toVBe outputted, a normal
return Is taken, and IN may be called with a new N.
) *2=COMBIN. (N,21,22,...ZN) _
— Combines the lists of data Itemé specified by tﬁe Zf

into a_slngle 1ist Z. The data item referred to by z

s the first data Iftem in the list 21,

$Z2=NEXT.(Z1,L)
Obtains the data iteﬁ ‘followlﬁg Z1 on the 1list
indlcated by Z1. If Z1 is the last item on its 1ist,

220 and controlytran§fers to L.

Z=QUOTE.($0T1N1E1L1V1E0-181|lTO ISITIRIITIN1GS)
Creates a new data item in free storage containing the

argument to QUOTE.

*N=INT,(Z,L)
- Converts the data item Z into an integer, If Z is not .

a number, control transfers to L,

*F=REAL.(Z,L).

Converts the data item Z into a real number. If Z s

~not a humber, control transfers to L.

™

*Z=STINT,(N)
' Creates a new data item Z In free storage containling

the string which represents the integer N.

*Z=STREAL, (F)
‘Creates a new data ltem in free storage containing the

string which fepresenfs the real number F,

-65..

*N1=COMAND. (N, L)
Re%Lrns the Nth argumehf of the current command buffqr
" when BEGIN was called in the integer (hol]erith)
variable N1. If the command buffer has fewer than N

arguments, control transfers to L, otherwise the

normal return {s taken.,

*P=KEY, (Z)
| - Converts Z inté a password suitable for use by ENCRYP
and DECRYP. Z'méy be any rléngth. P should not be
modified and is not suitable for printing.
*ENCRYP, (P)
Enciphers the wofkspace wifh password P. The result is
sultable for printjng;AUp to:three‘million characters

may be enciphered with the same P,

L]

- *DECRYP.(P,L)

Deciphers the workspace with password P. Correctness
of the password‘is.not chéckedﬁfinterﬁalTy; hoWever,
.thé format of the workspace is.checked. An ~enciphered
line has a speclal éharacter format for ali but the
lasf six characters,.which must be Integers., If the

format is not correct for an enciphered line, DECIPH
will transfer control to L. DECIPH uses the integers

to maintain sync; a transposition of two enciphered

lines will result In an error,

- 66 <

APPENDIX B

- PROGRAMMING EXAMPLE

A. Fleld Finder., .

Consider a class of strings such that an object

salary s always expressed by the first six characters

each string in the ;lass,_and a string is in the

and only if the first six characters of the string

numerals. A'field finder written in FAP to

order these objects in decreasing order

call Is SALARY.(Z,L),

SALARY

ORDER

CHECK?2

REV

.PUT .

SXA
LXC
CAL
LDQ
PAI
0s1
OFT

. TRA
CAL*
THZ
™I

- AXT

SXA
LDC
TXL
LAS
TRA
TRA
SCA
TRA
XCL
LAS
TRA

TRA

XCL
SCA
TRA
XCL

TXL

- ENTRY SALARY

XR2,2
$REALOC, 2
1,2

2,2

2,2
=0776077607760
FALSE

1,4

*42

XR2 - .
SALIST,?2

c%+1,2

*%, 2
PUT,2,0
1,2

PUT
CHECK2
ORDER, 2"

‘ORDER

2,2
REV
EQUAL

ORDER, 2
ORDER

MEM, 7, &

SAVE XR2
WORKSPACE LOC,
FIRST 3 CH,
SECOND 3 CH.

'OR' CH.
CHECK NUMERIC
NOT NUMERIC
DATA ITEM,..

NOT NEEDED,
TOP OF LIST

GET NEXT LIST ELT.
END OF LIST

- FIRST 3 CH:

GREATER, STORE
CHECK NEXT 3
LESS, GO ON

NEXT 3 IN AC.

NEXT 3 CH:
GREATER, STORE
EQUAL, DON'T STORE
LESS, GO ON .

SHWAP BACK

- TEST FOR ROOM

recognize

1Is given below.

called

of
if
are
and

Thg

-67-.

SLW

2,7 STORE CHARS,
sSTQ 3,7 , :
PCA 0,7
SLW 0,7 SORT LINK
TNX MEM, 7,1 ALLOCATE 1 WORD -
PCD 0,2 NEW LIST PTR.
ADD =2 " WORD COUNT
SLW 0,7 DATA COMPLETE
PCD 0,7 .
 AXT 0,2 . , '
* STD* ORDER - MODIFY OLD PTR;
SCA . SALIST,7? MODIFY DATA ITEM
TNX MEM,7,3 - ALLOCATE 3 wDS,
: TRA *+2 :
EQUAL SCA SALIST,?2 MODIFY DATA ITEM
' CAL SALIST
SLW* 1,4 " RETURN DATA ITEM
XR2 OAXT %%, 2 RESTORE XR2
‘TRA 3,4 NORMAL RETURN
N .
- FALSE ZAC S »
LXA XR2,2 RESTORE XR2
TRA* 2,4 . FALSE RETURN
* : .
SALIST PZE = o
o _
- MEM TSX $ERRORS, 1 FATAL ERROR-

PZE 0,2 - MEMORY EXHAUSTED.
END . : : :

«

B. SPLP Program.
Consider now é data stream containing personnei

information which is structured as'follows:

1, One or more names; ‘

2. For each name, a salary; -

3. For each name, one or more "fringe benefits",
Let the field finders NAME.(Z,L), SALARY.(Z,L), and
FR]NGE.(Z,L) exist and be capable of parsing three different
kinds of input lines, one for each kind of personnel

information., le wish to invert the da;a stream to obtaln g3

list of fringe benefits, salaries, and-names as ?ollows:

