Draft 6.5.68

Overview of Interprocess Communication Entries

Robert L. Rappaport, Michael J. Snier

During the "life' of a Multics proce:zs, the need arises at least once

~

for this process to have some information furnished by some other process;

s process is engaged in "interprocess communication'.

we say that th

incerprocess communication implies a synchronization of processes; a process

7

might have to 'wait' (idlie) for thel'other process to communicate the

information. By convention, fTor reasons of efficiency, such & process gives

blocks' lTtsel

-h

its processor away, or , until the awailted information has
been communicated, or until that specific 'event' has occurred. It is then
taken out of the blocked state and put into the ready state, or 'awakened'

The Traffic Controller entries block and wakeup provide those basic function§

An event is anything that is cbserved by a process and which might be of
interest to another process or maybe another procedure of the same process.
An event is always associated with some information to be communicated

to the interested (receiving) process. Examples of events are: the terminati%
ofi a computation, the unlockinz of a shared data-base or the arrival of new
input from an 1/0 device. These events happen outside of the hardcore ring
and are known as 'user-events' to distinguish them from 'system-events'

wh ' ch happen in the hardcore ring only and which ére discussed in section

r

BJd.2.

Process 'A' reaches a point in its emecution where it cannot proceed until

event 'E' has occurred (or in other words, until some information is

c

furnished by some other process.) lt therefore calls the Traffic Controller's

ol

entry block and abandons the processor. Process 'A' is now in the blocked
state, which means that 1% no longer participates in the race for a
processor, and will remain in that state unti! awakened by some other
process.,

Process 'B' now executes, and ohserves an event., This could be event 'E

for which process 'A' is waiting, it could also be any other event 'Qf

in which process 'A' might he interested some time in the future; the poin
is, even@)though process 'B' knows that the observed event is of interest

to process 'A', it has no way of determining what process 'A's current

state is, whether it is waiting for some event or whether it is executing.

o)

Consequently, the notification mechanism must be such as to allow the
preservation of all comunicated information even though it mizht not
be of immediate interest to the receivinz process.
However, assuming that proc035\;f7 'B' did obhserve event 'E', it calls
the Traffic Controller subroutine

call wakeup('A','E")

where "A' is the target process' ID and 'E' is the event information.

| W
In order to block itself, process 'A' has called l44$¢

call block(interaction_

where 'interaction_switch'! is a flag to

is blocking itself awaiting human response (fdrom a console).

Process 'A' now wakes up, returns from the

vent'! the information communicated by

3

If that information is the one % has wnited
e interrupted execution, otherwise 1t stc

in its memory=-snace, and calls b

L

BJ.?
Process svnchrenization
Both subroutines block and wakecup monipuiate the Active Process Table

~pormally,
(APT;Sv’EEdEk puts the APT entry of its own process into the list of

n
wn
3

blocked processes, wakeup finds the APT entry of the target proces
the blocked=1list and restores it into the ready-list. However, it is not
guaranteed that a call to wakeup in behalf of some process will actually

find that process in the blocked state; a'so,it Is not guaranteed that
a proceﬁs calls blosk WWHEWWWH because it is walting for some event to
happen that this evet will happen in the future, it might already have
happened in the past. Evidentlv, some further interaction is needed between
subroutines block and wakeup to insure that event signals do not get lost, =
and that a process will not mistakenly block itself, never again to be

1
wakened.,

A}

This interaction is provided by the prcqus'éﬂ/'wakeup-waiting‘(Q/f!ag.
This flag, which can assume one of the two values on/off is located in

the process' APT entry. A call to wakeup always sets this flag to 'on'.

Then, if the process is blocked, it will be put into the teady-list, e

it is left in whatever state it is. A call to block will actually cause the

proceas to mmimrhdmmth abandon its procecssor only if i1ts wakeup-waiting

)
Q.

1}

flag is 'off'; the flag's 'on' state indicates that mhm an event signal

as already occurred, and consequently

-

(which might be the one awalted)

block returns to its caller., Upon returning, subroutine block always resetsd

its wakeup~-waiting flag to ‘'off'.

. o LA
tpuliatce

In order to insure that no more than one process at a t

the APT, that +table is protected by an interlocking convention which is

respected by all the processes in the system., The process that currently

(9]

manipulates the APT sets a lock-word to a non-zero value, all other pro

D

Iz

esse
S

S reset

ot

o z

D

which want to access this tab ro

-

BJ.

e
i

This insures that there wiil never bo v conflict between an awakeni:

and a blocking process which might both try az? grab' the wakeup-wa

flag at the very same instant. o

Transmission of event information

.
inge
&

Associated with block and wakeup is a nn7ed system-wide data-base known

as the Event Transmission Table (ETT). This table contains as many
receiving

(.)

queues as there are ohmoiamnt nrocesses in the system. Every receiving

ev

p)

-

ko]

has in its APT entry the head of its ETT event queue, A call to wakeup

caﬁses'the new event information to be appended to the target proces
ETT queuem.

Subroutine block, before returning, detaches the ETT queue from the
APT entry (providing the process with a fresh, mmitim zero-length que
and heturns the detached queue to its caller, which then copies the
queue's contents into its own memory space and frees the ET

future use,

Subroutine block is discussed - detalil 'n section BJ.2.1 and subrout

wakeup is discussed in BJd.3.2.

~

) (2)).'/-u UHH 2 fj(/;fclc J (,."27'\// a2 anl (‘&év/l“—/(»é? OL‘(C /‘-\./\”/’Z/{/’"- e N

CC;1‘1 e Ca_/l‘//fv\. (-! ;D C ,\ %{!- C 8‘/1j ot (’a o //[C = & F/lj‘“ < L;TT- [274V 3 r//['.f‘c r ,'[‘:-‘ 4

/

be Secheot 24 .

..<

o T g w7

S

pro

i

ue)

for

ng

n

a4

OC¢

cess

