8Q.6.00
Draft 6.13.68

Identification

Overview of the Interprocess Communication Facility

Michael J, Spier

Purpose

In the "16fe' of every process in Multics, the need arises at least

.once for some information to be furnished by some other process.
Processes are, by definition, completely independent of one another; an
observer in one process can never tell with certainty what is actually
happening inside another process at any given time, However, in order

to exchange information, processes must be able to communicate and
communication means synchronization. The only point in the system where
processes are ''under control" (mainly because it is there that a process'
virtual processor Is managed) is in the Traffic Controller; its entries
block and wakeup are the basic tools available for process synchronization.
The interprocess communication facility (IPC) is the immediate {and only)
'customer' of block and wakeup and offers the additional service of
transmittihg (in association wﬁth each call to wakeup) a limited amount
of control information from one process to another.

- The Traffic Controller Is described in sections BJ, familiarity with

it is assumed.

Terminologsy

An event is anything observed during the execution of one process which
may be of interest to another process or nerhaps to another procedure of
the same process. The IPC handles events which are of interest to

non-hardcore procedures and which are known as user=-events. Fvents which



BQ.6.00 Page 2
are of interest in the hardcore ring only are named system-events and
are handled by a dedicated, mmrirmin wired-down module; the module's name
is Process Wait and Notify (PWN) and it is documented in section BJ.2 s

any reference to 'event' in sections Q.6 implies 'user=event!',

An event is always associated with a call to the Traffic Controller's
entry wakeup. A group of one or more events is always known under a

collective event channel name which is the Symbolic name of an event channel

(which we loosely define, for the moment, as a.mailbox for events).

For example: A1l the events which are time observatioms may be collectively
known by event channel name mim "time" (or "clock" or any other agreed

upon symbolic name.) Processes which happen to make time observations may
put messages into event channel "time"; A process may interrogate this '
event channel (mailbox) and find there messages indicatihg that time
readings have been taken at (let's say) 3, & and 5 o'clock.

An event channel is the basic IPC variable and is, physically, an entry

in an event channel table (ECT) :

Introduction

Following is a typical, and oversimplified, example to demonstrate thé
basics of IPC; the implemented IPC facility is muchvmore complicated
largely because of reasons of protection.
Process 'A' (sending process) observes an event 'E' which it knows to be
of interest to process 'B' (receiving process'; it knows an event channel
name 'C' which belongs to the receiving process and which is the receiving
process' collective name for events such as 'ELé'Process 'A' calls the IPC
tAY,

and asks it to transmit a message to process 'B' over event channel 'C .

the message contains information about event 'E', process 'A' and event

channel 'C'.



BQ.6.00 Page 3

The only way messages can be communicated between processes is through
the use of shared segments. The IPC maintains a system-wide data base
named the Event Transmission Table (ETT) which is known and accessible
to all processes in the system. |t therefore allocates an entry in that
table and puts into it the event message. |t now has to associafe that
message with the receiving process 'B'. To do so, it calls the Traffic
Controller entry wakeup, giving it as arguments the event message and
process 'B's ID. The Traffic Controller appends the message to process
'B's Active Process Table (APT) entry and wakes the process up.

Process 'A' returns from the Traffic Controller to the IPC, and from

there to its original procedure,

At some point of its execution, process '3' needs some information from
some other process. |t knows that the information will be put in a

s the mailbox for that type of information.

specific event channel which

1+ calls an | PC module named walt coordinator which interroszates the event

channel. |f there is a message in it, process 'B' {s satisfied and resumes
its execution., However, if it is empty, process 'B' must stop executing
until such time as the message will bhe available; it calls the Traffic
Cortroller's entry block and abandons the nrocessor.

When the process returns from block, it knows that it returned because
some other process sent it an event messagej At finds that message appended
to its own APT entry. However, the message may, Or may not, be the one

for which the process is currently waiting. The wait coordinator therefore
first copies the message into the annpropriate event channel (remember that
the event channel name was part of the message), then 1loops back to the
incerrogation of the event channel which is of current interest, and

el=her returns or calls block depending upon whether or not it finds the



BQ.G.OO Page L

awaited message.

Baslic _lnterprocess Communication

We now further define an event channel as being in the receiving process'
address space only, and an event channel name as being a unique identifier,

This poses a certain problem, because in order to send an interprocess

message the sending procesé needs the '"mailbox" event channel name which

is unique and can be known only through interprocess communication.

The answer is thet thewe is nothing spontaneous or dynamical about interprocess
communication. WWhen we say that a process reaches a point in its execution

at which it needs some information from another process, we mean that when

that particular procedure was coded, the programmer had a very specific type

of event in mind and that he knew, at coding time, what the event channel name
was to be. For example, when a process accessefa shared data base, by convention
it first sets a "lock" word to a non-zero value, and before leaving the data
base resets the same lock word to zero. Another process which wishes to access
that data base first tests the lock word, and if it finds it non-zero it knows
the data base to be "locked", and calls the iPC to wait for an event signal
which would anounce the unlocking of that cata base. Respecting that convention,
the flrst process, after unlocking, sends |PC messages to all waiting processes.
Now this traffic necessitates the knowledge of event channel names., They are
made kriown by the use of the lock word as a mailbox designed for the oommumio@ts
communication of event channel names. Once that an event channel name is known,
the nature of the event channel aliows the transmission of some additional
information which may be another event channel name thus allowing a growing
complexity of event channel networks. However, the fact remains that the very

first event channel, namely the lock word, was known at coding time and that

without it no interprocess communication would have been possible,



:AJ\.\.\/.UV ML,L‘ -
in other words, the fact that an IPC message contains some information
which may be an event channel name allows interprocess communication

to be recursive and tree-structured; However, the recursion must have

@ beginning; we name that beginning "basic interprocess communication"

[ne}

and understand it to be any feasible means (going as far as manually-fed
inter-console messages) by which a unique event chaﬁnel name, Kknown to
some process, may be made known to some other process,

Normally, this problem is solved by having programmers agree, at coding
time, upon some common external symbol (or upon some absolute location)

ithin a segment which is known to both processes. There they communicate

- -
<

the very first event channel name.

URKUEKRAENRER Typical examples would be: The Process

B
=

RAR D RN H MO E B XK
Initialization Table (PIT) in which the Overseer process communicates

to the newly-created process an event channel name, the above;méntioned
lock=word in which the locking process puts an event channel name over
which all other waiting processes may communicate with it, the Device

Signal Table (DST) where a sending process finds the event channel associat

with an 1/0 device, etc.

Protection

the usex

IPC is a facility which does for the user what 4= can easily do for himself
12 & - H ] i H H £ s | .

7 the user is expected to devise a way in which to perform the (i tial
basic interprocess communication all on his own, there is no reason why he

all of his
should not be trusted to do wiixwgxs interprocess communication by himself.
Syski

’C is provided as a &LlmwwknEilzesd facility that can be invoked by any
user. However, it must be implemented in such a way so as to perform ander
the very same conditions uhder which a user-made IPC would have worked.

he reason is simple, the user operates under the constraints of a ring



LD\ e U, UU Jage o
protection mechanism. The IPC facility is a system module and therefore
@njoys a broader range of privileges. Carelessly implemented, it would
Jrovide the ideal means for the "unfriendly" user to completely
circumvent the systems protection mechanism. The facility must therefore
be implemented in a way such as to prevent it by hardware from doing

in behalf of the user whatever the user cannot do for himself.

The protection of IPC is implemented as follows:
Aess 7/)4"4 o eflra J@

1. IPC is EErmr Siimarrya"pe in rings 1-63 only.

2. The actual message transmission between processes is done
in the ring 0 ETT only. The signalling module is invoked
from outside the hardcore ring to transmit a message. |t

G hoina R calllley oy peuds

T EE S rea=y~ (and without the caller's ability to
interfere) the caller's process=-id and ring number to the
ETT message.

3. The receiving process has an event channel table per ring
(normally two, for rings 1 & 32, possibly G}L&ﬁﬁ%ﬁ& When it
returns ®rom whae block it retrieves all of its ETT messages and
(still in ring 0) copies them into the corresponding &CTs by
ring number.

bo A11 IPC modulesy(but for the signalling module and for the
hardcore caller of b]ock) are operating in the process’cutrent
ring and are capable of manipulating only that ring's ECT.
Thus, if a user decides to either have his own version of IPC
or to simply destroy his ECT, only his ring is affected.

5. IPC's ring 0 procedures, mainly the caller of block which upon
return transcribes the messages into the various ECTs, must be

indifferent to
carefully codéd so as to make them mrRMumirarahiexwa ECT contents



BQ.6.00 Page 7
A1l control information in the ECT must be either unreferenced
by the ring 0 module, or must be kept in ring 0. This is in
order to assure that ring 0 will not have to rely on outer

ring information.

In order to allow rapid message distribution, the event channel name has
R A oss D

s et W3 Sotist
g ‘a';)/'. LN e = it s 3

_—

heen designed in such a way as to make

The event channel name is a 72-bit string and is structured as follows:

cdel 1 ev_chn,
\ 2 ring bit(6), /* ECTS ring number */

W\
0 zr 2 address bit(1l4), /* channel's relative address within ECT */
\)V\" N e

"\i*”' \ 2 QETEEE;:§ bit(52);/* clock reading at channel creation time */
» A — . . .

X Pra wh o grmnd, bt b Xt

When the process returns from block and retrieves the ETT message, it
finds the event channel name. ft extracts the ring number, accesses the
ECT of that ring at the relative address derived from the name and
compares the password with the one stored in the ECT. Thié insures that
only messages addressed to legal event channels will be distributed.

Any error detected, for example the absence of a2 ring or the mismatching

of passwords, causes the message to be discarded.

Note: The event channel name's structure will never be of interest to

the user, to him it is merely a 72-bit symbolic name. Also, as the

14-bit relative address implies, an ECT is restricted to a maximum size
o of 106K. |t~iE_T3£E,£hgg_§mp1e, and any overflow would most certainly be

due to some faulty system design elswhere.

Imnlementation

This paragraph briefly describes the implementation of 1PC. Details

can be found in the appropriate BQ.0 sections.



20.6.00 Page

o
& (5]

The interprocess communication facility consists of three major

modules:

1. The Event Channel Manager (ECM) which resides in non-hardcore

,

rings.
2, The Wait Coordinator (WC) which resides in non-hardcore'rings.
5. The signalling and reception mechanism which t®m resides in

the hardcore ring and which is sub=dévided into the following

a. The Process Signal Manager (PSM)

b. The Device Signal Manager (DSM)

c. The Message Dispatching Module (MDM)

The event channel manager is a collection of procedures which create,.
maintain, interrogate and eventually destroy event channels. The ECM
operates only within its ring-priviliges and cannot access inner=-ring
ECTs.

The Wait coordinator is the process' event bookkeeper. !t files (in
association with the MDM) arriving event messages égﬁ%heir appropriate

avent channels, and retrieves these messages (or calls block awaiting

their arrival) whenever the need arises.

3
m S

The PSM 1s &alled by a sending process to signal an event which is inter:

to the system, the DSM is called by a sending process to signal an event

which 1s external to the system (1/0 interrupts).



