BJ.0O

Draft 5.31.68
Supersedes 2.23.67

ldentification

Overview of Traffic Control

J. F. Saltzer, R.L.Rappaport, M.J. Spier

Purrcose

This section presents a general summary of the procedures of the
central supervisor that perform processor multiplexing, interrupt
management,and inter-process mommmminotihnn signalling. The procedures

are known collectively as the Traffic Controller.

References

Basic €oncepts of the Traffic Controller are set forth in the Project
MAC Technical Report "Traffic Control in a Multiplexed Computer System',
by Jerome H. Saltzer, MAC-TR-30, published July, 1966. Zhis thesis
presents the design approach to the Traffic Controller and is useful

for bhackground information.

Jerminology

A process is basically a program in execution. The tangible evidence

of a process is a processor stateword (a set of machine conditions)

and an assoclated two-dimensional address space (a core image). The

address space of a process, defined by a Bescriptor Segment, determines

the region of accessibility of the processor, both in execution of

instructionSand in obtaining data. A dynamic linking mechanism allows the
address

process to change the contents and extent of its own mommmm space, but

this does not alter the fundamental view of a process as the execution of

a program tmmiin contained in the address space.

Witkin tha system every procncs known to the system is identified by

BJ.UO Page ¢
a unique number, its progess !, D. This number is a key to a table of

ail known processes, which contains more information about each process.

Every process is in-one of five executiom states:

A running process is at this @m&w instant executing in some processor,

1. running FS\
2, ready S
3. waiting :?
4. blocked S?
5. quit N
R
3

1
¢

A ready process is one which would be running if a processor were

available. A waiting process does not have immediate use for a processor,

. N
it is waiting for a system-even?féo happen within a predictable period

J%Ca/l/l

of time. A blocked process is one which has no use for a processor, it
is waiting for some event to happen someRirI® time in the future. The

event may be arrival of a signal from elsewhere in the system, or

-y (1 exanrle

perhaps completion of a computation by another process. A guit process
is a hdocked process that does not await events and which is guaranteed

to have left its hardcore data bases in a predictable state.

Every process is or is not loaded into core memory. The definftion of
loaded is entirely an operational one. The "core image' part of a process
may be sfored in core memory, or in secondary storage, or split between the
two. A procéss is defined kmzwdost as loaded only if enough of it is present

in core memory that it may operate within critical supervisor modules.

Ar active process is one for which there is sufficient information in

ready
ccre storage to allow it to enter the wmumzy state. The necessary information
for an inactive process is stored &n secondary storage, and must be

retrieved before the process is allowed to enter the ready state.

BJ.OO Paze 3
Operationally, an active process is one which appears in the Active

Process Table.

A number of things can happen to divert a process from its programmed
course., These diversions have been variously termed traps, interrupts,
and faults. We use the term interrupt when referring to hardware signals
coring from outside the processor which cause a processor to depart from
the procedure it was executing. lnterrupts are distinguished from faults,

which are triggered by hardware signals generated within the processor.,

Prccessor multiplexing incliudes both the sharing of processor among many

users to provide interactive response (sometimes called time-sharing)
and switching among several procedures in response to interrupts so as to
keep both processors and 1/0 devices as efficiently used as possible

(scmetimes called multiprogramming.)

The Traffic Controller

The Traffic Controller is a set of procedures appearing within the address
space of a process.

The functions progided by the Fraffic Controller are intentionally
primitive; it is viewed as the innermost layer of a mu1ti}ayered supervisor
existing within a process. In fact, a user's program is never permitted

to call the Traffic Controlier entries directly. Instead, the user's
ptogram calls some outer supervisor laver which, for example, checks the
au-hority of a call to signal another process.

The rest of this document will describe the Traffic Controller as though

it is used directly by some "customer", !t is understood, however, that its

only "customers'" are actually other supervisor procedures.

BJ.0O Page &

The Traffic Controller can be conveniently broken into two distinct parts
which perform its majot functions:

l. The system interrupt interception routines

2. The process exchange
The three major functions of the Traffic Controller are the following:

1., Perform multiplexing of processors among processes

2. Provide an interface with the system interrupt hardware

3. Allow one process to signhal amother
An important function of the Traffic Controller is processor multiplexing.
To visualize this multiplexing, consider the progress of a process, as
seen by the system. As time passes, the process goes back and forth among

the running, ready, waiting and blocked states as in the diagram below:

~ T
ready‘ runi readyi run gblocked ready|{ run | wait | ready | run

i

runq wait

1

The Traffic Controller has inserted the ready states in order to multiplex,
or share, the processor among all the processes demanding service. The
process, however, does not normally observe the times spent in "ready"
status. From the point of view of this particular process, the above

diagram looks like this:

' . 229 ' l 1 .] {
run. wait [run ' blocked , run 'wait, run:
¥ 4 | 1

with dotted lines indicating points at which the calendar clock takes a
quantiam jump. Multiplexing is arranged so that, except for the real time
clock jumps, it is basically "invisible” to the affected process. This
means that a process can completely iznore the multiplexing being performed
by the supervisor. It also means that a process must be substantiallyg

independ@ht of timing. A further implication is that service to critically

8J.00 Page 5
timing-dependent hardware functions must be provided by the Traffic
Controlder itself.

The Traffic Controller has two interfaces: on the one side with the
system interrupt hardware, and on the other with the rest of the
supervisor and the user's program. The hardware interface is described in 7l
detail in the section on interrupt handling, BK.m
The interface with the rest of the system consists primarily of six
calls into the Traffic Controller. (There are also several less important
antrypoints concerned with process synchronizétion, process creation,
end processor-resource management. These entries do not affect the
<ignificance of this discussion and can be ignored for the moment.)
The six calls can be classified into three groups as follows:

1, Process Wait and Notify (PWN) calls: wait, notify.

2. Interprocess Communication (IPC) calls: block, wakeup.

3. Process interrupt calls: restart, quit.

“he Process Walt and Notify calls

CUMMMMMMB M XM M AN X MR AR MM NN NIIIEN Every process reaches a point in its
sxecution where it has to have information from some other process;

: processor
if the information is unavailable, it abandons the pmommommmn on which
it currently executes until such time as the information will become

avallable, or until that event happens. We name "avent'" anything that

is observed by some other process and which is of interest to our

process. We distinguish between two classes of events, system-events

and user-events. This distinction is made for reasons A that are largely
implementation-dependent.(Theoretica]}y, events are all of the same natur
and can he haddled uniformiv.)

System-events are characterized by the fact that they can be observed

in the hardcore ring only and that they are guaranteed to happen within

BJ.0O Page 6
a predictable period of_tfme (normally measured in milliseconds.)
These include the arrival of a page into core; or the unlocking of
3 currently-locked systemwide data base.
A process that has to wait for a snecific system-event calls
wait (event)
This call puts it into the waiting state and associates it with 'event'
so that whené@ﬁ@ some other process observes the occurance of 'event'
it calls notify (event)
gggyﬁkfﬁi
which causes a11 the processes which areVwaiting for 'event' to be
restored into the ready, and eventually the running state. As can be
seen, the PWN calls are zemphaondn event oriented. PWN is discussed
in detail in sections BJ.2.

The Interprocess Communication calls

A process may wish to give its processor away until it be notified
of the occurance of a user-event. Typical of a user event is that
it may happen anytime in the future; also, a user-event is process-
oriented (the signalling is done towards a specific prdcess rather
than "generally broadcast") and is always associated with some tmfmmmoiin:
information,
Entry point block of the Traffic Controller is called by a process
when that process cannot proceed until a signa1'in the form of a
wakeup from another process arrives. It is the responsibility of the
process calling block to insure that some process will indeed wake
it up. Block is called with onw argument ¢

call b]ock(interact'on_switchgah%“+>
The Traffic Controller will place this process in blocked status,
where it will remain until some wakeup signal arrives for it.
The 'interaction_switch' indicatesm whethar or not the process is

blocking itself while interacting with a human being, in which case

BJ.00O Page 7
the nrocess will be given a higher-than-usual priority in its race

for a processor, when awakened, to insure quick system response to
/ A1 e N~
human requests“e”&*# 2 prene ﬁﬁ Ll Weﬁ9ﬂa@4> je it ned 1

é,uo\e. ‘T—YAS')"‘;“ wah’apﬂm"o
The entry name wakeup is used whenever a process wishes to wake

up @ blocked process. The wakeup, by definition, is directed to
some named process as a result of the observing of some user-event.
A typical call from within process 'A' to wake up process 'B' and
inform it that event 'E' has happened would be
call wakeup(B,E)
Process 'B' may be running, ready, waiting, blocked or quit at this
time.y Although the information associated with event'Eﬁwill not
be lost to process‘Bﬁ the call! will have e%fect only if'Bﬂis blocked,

in which case it will be m% restored to the ready state, or awakened.

Process Interrunt calls

We recoghize two mmoommoomirramnnoptm types of process interrupts
1. The timer run-out interrupt
2. The quit interrupt

deplotes
the first occurs whenever a process mmo——®m its current processor-time

allotment, the second whenever some other process wants to deprive this

process of its processor=-time.

When a process is initially made to run, it is éiven a certain time
allotment which the hardware keeps track of., When this time has been
dsed up, a process—-interrupt is generatnd which diverts the process’
erecution into an interrupt handler which then calls the Traffic
Controller's entry point

“call restart (execution_switch)

to reschedule the process, give it a fresh time allotment and put i4%

into the ready state. 'execution_switch' tells the scheduler whether

BJ.00 -z Page 8§

e

el it aktallncliatertalasdactsrty it lobosteots b steateats Yt ”‘”“““\\\\
the process was executing in_behalf of the system or)in behalf

of the user when mhm its time allotment ran out.

Sometimes, a procesé may wish to 'stop' another process' execution.
If process'A'wants to stop process 'B' it calls

call quit (B)
which will put process'Bbinto the quit state, By convention, process
‘é, if currently executinng in behalf of the system, is allowdd to finish
its current system~task before it is quit, This is done in order to
insure that a quit process always leaves hardcore databases in a
predictable state.
Entrypoint restart, and the schedu]er; are discussed in section BJ.5,

quit is discussed in section BJ.hL.

Interrupt Handling

The underlying philosophy of interrupt handling is that interrupts
are signals similiar in nature to wakeun calls, but originating on

external hardware equipment. Thus the sole function of the interrupt

‘handling routines is to transform an interrupt 'n%o appropriate

L)

calls pmoomrhonfinndddsnfonsnndhonn to the Process Exchange.

As an example, for an interrupt representing the completion of

a write operation on a typewriter, the interrupt handler would

call wakeup for the process which originated output to the typewriter,
signalling an event=-name which is associated with that typewriter.

No other computation is done at the momomtmmf instant of the interrupt.

The process '"responsible!" for the interrupt (in the above-examnie, the =
[

-
H

process initiating 1/0 on that tyrewriter) is restored into the

-
i

ready state by the wakeup call; computation in response to the signal

(data transformation, redundancy checking, etc.! is not accomplished

'] tha raresne TR A e .Y T aymrsatiang

BJ.00 Page 9

Interaction with the File System

The operations of processor multiplexing interact with those of

core memory multiplexing. A special interface between the basic

file system and the Traffic Controller helps guarantee that the

Traffic Controller will not attempt to multiplex processor capacity
among so many processes that memory becomes too crowded. To this

end, a little-used process may be unloaded by the File System

if space becomes too tight; when an unloaded process comes to the top of
the ready list it will not be re-loaded until adequate space is axakkahy
availablem for &t to run efficiently. Unloading is accomplished by
paging out the remainder of i%s descriptor segment and other segmants
needed to enter the running state; the process is remembered only

by its entry in the Active Process Table. .

As a further measure, a process which has not been used for some

time may be deactivated, which means that its Active Process Table

entry is copied Into pageable storage. Since reactivating an inactive
process requires a directory search it can only be done at a time
when page faults are permitted; this has for result that only blocked
or quit processes may be deactivated.

W
toading, unloading, activating and deaztivating ls” done by a special
(and never unloaded or deactivated) system process known as the
Traffic Controller Daemon Process and which ®@meceives all signals

intended for inactive procesces. This daemon process fis described

in section BJ.6.

MULTICS SYSTEM—PROGRAMMERS‘ MANUAL SECTION BJ.1 PAGE 1
Draft 5.24.68

Supersedes 8.3.67

TIdentification

Overview of Traffic Controller Data Bases

R.L. Rappaport, M.J. Spier

Purpose

Associated with the Traffic Controller are certain data bases, some of which

are per-system and other of which are per process. (Per processor data

bases are discussed in sections BK.) The details of these various data

bases are discussed in 'the remaining sections of BJ.l. The present section

is an overview and a discussion of the strategies used for selecting a particular

data base for a particular item.

Per System Data Bases

All per-system data bases are maintained by the Traffic Controller in segment
4 tq_data) . There are five major pafts of ihis segment: |
1. The Traffic Controller Data Block (TCDB)
2. The Active Process Table (APT)
3. The Active Zvent Table (AET)
4. The APT Hash Table (APTHSH)

5. The Activator Table

The Traffic Controller Data Block is a collection of miscellanedus items
in segment tc_data; some of these items are internal to the Traffic Controller
(pointers to the various tables, table descriptions), others (such as the

variable containing the number of loaded processes) are of general interest.

MSPM SECTION BJ.1 PAGE 2

There are two main categories of items in this data block: Certain per-
system Traffic Controller items have to go somewhere and seem most naturally
to go here. There are also system parameters which presumably will not

be changed other than occasionally by a system administrator (for example,
the number of levels in the multi-level ready-list). Rather than have these
parameters built into code as constants, it seems more appropriate to collect

them all in a single place. The TCDB is described in BJ.1.1.

The Active Process Table contains certain information about each process which
. o e e . .

is currently active. .A® item must go into the APT if it needs to be accessed
from other processes. TFor example, sending a wakeup to a process involves
knowing that process' execution-state; likewise, selecting the next process-
to run from the top of the ready-list involves knowing that process' loading-

state. Consequently, those two state variables have to be kept in the process'

APT entry. The APT is discussed in BJ.1.2.

All processes waiting for a particular system event are threaded into a
single list (associated with this event) and the head of the thread is
kept in the Active Event Table. The AET is a table containing a gfoup
of pointers to a collection of event threads running through the APT.

The AET is described in BJ.1l.3.

Communication between processes is done on the basis of (symbolic) process

identification, but the communication itself requires knowing the location
of the target-process' APT entry. To makelooking up the APT,
.given a process-id%‘a hash-table of process-ids is maintained by the Traffic

Controller; APTHSH is a typical hash table associating process-ids and

MSPM SECTION BJ.1 PAGE 3

relative pointers into the APT. The APTHSH is described in BJ.l.4.

An "inactive' process does not have an APT entry. A signal (wakeup, quit,
unquit) sent to an inactive process is diverted to the Traffic Controller
Daemon Process (loades/activator daemon) which has '"power of attorney" fér
inactive processes. Whenever subroutines wakeup, quit and unquit are unahle

to locate an entry in the APTHSH for a certain process-id, they write that
process-id into the Activator Table which is the daemon's mailbox. The

Traffic Controller Daemon Process retrieves these process-ids from the Activator
Table and activates the corresponding processes. The Activator Table is

described in BJ.1l.5.

All of these data bases are accessed in the hardcore ring at times when
page faults cannot be tolerated, so segment tc_data (as well as the
procedures constituting the Traffic Controller) is wired down. It is

accessible for reading and writing in the hardcore ring only.

Segment tc_data is pre-assemble@,and loaded during system initialization
time from the Multics System Tape (MST). It is initialized by a procedure
named tc_data init which allocates space in tc_data for the various
above-mentioned tables, initializes the tables and puts values into the
variables in TCDB. By convention, mainly for reasons of clarity, all tables
begin at an address that is 0 mod 64, and all APT entries begin at an

address that is 0 mod 16.

MSPM SECTION BJ.1l PAGE 4

Per Process Data Bases

In addition to the per-system data bases described above, the Traffic Controller
maintains certain data bases for each pwocess in.the system. 1In general,

there are two types of data: Tgb; which must be wired down, and that which

need not be. The former is kept in the Process Data Segment (PDS) and the

latter in the Process Definition Segment (PDF).

The process data segment contains two basic items: The process' concealed

stack and a block of miscellaneous data referred to as the Process Data

Block (PDB). The PDS is discussed in BJ.l.6.

The process definition segment is similiar to the process data segment but
it is not wired down. It also contains two items: The fault stack and the

Process Definition Block. The PDF is discussed in BJ.1l.7.

Strategies

All Traffic Controller data items of a per-system nature are kept in segment
tc_data. Per-process items can be kept ‘n either the APT, the PDS or the
PDF. If the item must be accessed by any other process it is kept in the
APT. Otherwise, the decision as to which block to put it in is based on
whether or not it must be wired-down: If so, it must go into the process
data block; while if not, it may go into the process definition block.
Clearly, it is desirable to put as few items as possible into the process

data block so as to minimize the amount of wired-down core.

For convenience, certain items are kept in both the APT and the PDS.
These are items which other processes need to know, but which the current

nrocess must access frecuently. Accessing the PDB is more efficient.

