Overview of Process Wait and Motify
R.L.Rappaport, Michael J. Sniear
DirrnAep
Prozesses executing in behalf of the system in the hardcore ring
somntines have to abandon their current nrocessor and revert to
the "waiting" state, iting for someo system-event (such as the
uniocking of a systemwide data base, or the arrival of 2 pase from
che drum) to happen. The Traffic Contreller subroutines wait, notify,
tim o :
addsvent aat=—nlewer™ provida the tinchanism by which a process can
eithar enter the vaiting state mrurdmnznz or release some other process
from that state and put it hack on the ready=list (notify).
Ins ndnction
The Traffic Controller's interprocess cormunication entries bhlock and
21low
vakeup @ (see RJL3) mxm provide the means necessary in order to FRm
to to
a proces?Y@?t%er give its processor away orlFeéstore ancther process
into the ready-list. Theoreotically, subhroutines block and wakeup would
~ - / . . .
sutTice to handle all cases of process wait and notify; howaver, experience
has shown that block and ya primitive, functionally, and that
to have a Process VWait and Notify (PWN) mechanism that makes use of these
prinitives vas too costly from an efficiency point of view.
fo be specific, the purpose of a PWN module is to '"keen book" of all
Alting nrocesses, to remembher which pirocess is walting Tor what event
C\w\r,?\“'\
ant to nake sure that whenever a soasifte event hanpens, only the nrocesses
that are actually waitine for that evernt he "notified." PUM is concerned
Hhe Lm@oduu«: =—5 595K ‘\7—5—@9_)
with m Ysyvsten events" (o, dlmewolitine S Sl ac Lo tnlocl
Fhe ‘w_Q -——J N pagl fon dhe Adram) :
e e SALo 0 arrlva feamesthe—brron) which are guaranteed to happen

fo

-

.

ictahle period

7 mn amm e

of time, normally measured in millisreconds,
4 P

Yo
vt

into & wa

mmmmmnetiim having a process eo

cost hf MU)6 7 tional compared with the amount of processor time
saved, An additional characteristic of svstem events is that a process

will never wait for more than a single sﬁsfam—event at a time, Conséquont?y,
the cheapest way to provide a PWN facility is to thread the waiting-process'
APT entry into a mmimtk®® wait-1ist associated with a specific event, and to
assoniate the head of that list with the event name so as to allow the

Tving process to find the 1ist and restore the waiting processes into
the ready state.

he Active Event Table (AET, see 3J.1.3) is a table containing a group of

releative pointers to a cdllection of event threads running throush the APT.

It is a wired=-down table in segment {tc_datad> and its size is an agreed=-upon
£ S .

et
constant (actually a prime numher, to facilitate hash-lookup.)
Lat wvs suppose that there are N entries in the table. Fvents are comnunicated
to FUN by name and all processes wz2itine for an event named A will be hanging
off the thread pointed mm at by an AET entrv associated with A. In order not
to have to proride a uhique AET entry for each possible system-event, we must

Py

perform’a mapning from the set of 211 nossihle event names jnto the sot of

intazers from 1 to N (table size.) In this way, processes waitine for events

AY may both be placed on the same thread and may he notified incorrectly

that their event has occurred. However, if the AFET tah1é size is larce
compared to the number of loaded processes (which alone may wait for a
systen=event) and the mapping from event names to numhers is done so as to mum
evenly distribute the names over the nicbars, the conflicts should he kept

Alsa, for reasons of efficiencv, cars is taken to insure that nrocesses waitin

t

Tor systen=events will not be unioaded by the Traffic Controller Daemo

3

T - ! & -] ~ 1! 4 H ! P oy r 4= " - - - %

ire anove-described strategy is designad to assure the smoothest and most
nffizient processor-resour~- anagerent whenever a nrocess is ecxncutinzg in
the bardeore rinc: this is o “thost importance considering the fact that

. , . .
a process nay snend an estimatesd half of rirtual processor tirn in
rine

ng 0.
Irntsmantatinng
! 3
An in the AFT contains two items, 2 pointer to the head of +he even
H " W« wh ALk
list amrdmemfidng(which may assume a zero=valuer if there is ro list) and a
.C].,,,. Nl eAly mMAay Aaccrima ~c =t 1 AR ~
flag (which may assume one nf the two values ON/OFF),
o /OF!
- . ., . .
An ART entry is said to be Innctiva {f i*s rointer is of zerao=value and
the LTa~ o . £ " H H H
1 TS tag 1s set to ntT; otherwise it e an tn A Aa~tT oA
> . - ‘N he notivn,
A " . R
inactive = (pointeor=0) & (flaz=0"f)
Active= Tinactive
N H) 4 =
Depending upon the state of an entry, the four PV'M subro onnrate
.
according to the following algorithm:
A f s I ol N e ol
ADDEYVYENT (A) always spts entrv Ale flar +=n ON
_‘.,,__ﬁ—! CYCNT (’\\ .l!w' cAte ARt A | SR K. EES— . % B =35 “ammsnanmeeand
e -) LI S 3 L WAl
. A .
l‘A/\!T (,x\) !'F (/_}‘ lhﬁ’:tl""" r,\l_,,.,.?,‘g
s £ . .
it A active: puts Ttself on thread.A, abandons
proceossor
A L B . . -
'OT.Y {/\> l.f: /\\ inacttive: retiurne
if N active ! activat + 1
i / acTtve ce=aACtivates /\, nute 11 |.y’-\§a,l:‘.-,l,,.
processas on ready list
'S H £ H Ay . -
A typical way of using the PN facility s ontlined “elow:
. "
At some point in a comnutation we reach a where we do not wish tn
. >) thet . o TR R :
. . :)
continne until A particulaor rondition P - Tharnfore .we BArErre
} - i LIAN > i ® o ‘ A | - i
F'e - A e - . B . .
A test to see if the condition s sat c if ves, we simply continue
e
and f not we arrance to wait for =he conditioan tn chonce in +he faAllowin
L.
way., Starting from the 1 tagte
1. Test condition, 'f ftrue go to stepn 5.
2. 1f not true 211 addoven "N Aactivatae Auvnnt

successtiu]

no R 19 #buﬁgohvmle }Lc éb@m/r

call d

. > L CONGiTion azai,
return co to sten 1,

L, If the retest was
—EresereA e

TESS s theomty o e cnrrent iy —imrterestod |

L‘\Uk Vess! c{g) (NN @ CJ‘(}1‘-\,‘3) ‘oy..mw

5 AP
v L VOITC e

inactive,

and is necessary hecause e have a limited wired-down data hase
to keep active events in.
5. continue, b
Soretines in a computation we hecome aware of a conditinn‘of which others
may be interested in this case we call notify to "broadcast' the gcod news.
The test of whether or not an event is active nrovides »n interaction
hatween subroutines wait and notify, Without it, it would be possible
Tor a process to put itself on an event-list and give its processor aviay
richt 2fter that event was notified by soma other nrocess. If this was the
Tast time for this event ever o occur, the waiting process will never.
azain run. According to the PUN algorithm, notify deactivates the event.
A nrocess calls wait onlv after zi’has nrevicusly called addevent, which
activates the event. Vhen the process calls walt and finds the event
it knows that someone has notified all the processes waiting for that event
and conseauently immediately returns.
Jvee

The Lour PUN subroutines are described in detail in sections PMMZMMM

SrEmMAaneca

The anproximna

mAas are oiv

ANDEVENT
T

VALT (avent

(Prvont

-3/ Naspet W/Qfa .

execute

o tlm(x necessary to
ST D
2]
—S2.
act ‘/(‘) ~ 200
active) ~700

a PWN subroutine is es

followsom

NOTI=Y (event

(event

~ 200
nroccas

