MULTICS SYSTEM-PROGRAMMERS' MANUAL

Identification

Active Meter Table Management

T.H. Van Vleck

Purpose

This section describes the hardcore ring subroutines for managing the Active
Meter Table (AMT), and the Account Update Process, which updates resource
usage figures from the hardcore ring to the Account Data Segments in the

administrative ring.

Calls
Two calls are provided for managing the AMT:

1) start_meter (account, amti, err, code)

This entry is called whenever a process or a segment becomes active. Its
purpose is to insure that a wired-down "scratchpad" will be available to
accumulate usage figures generated when the system connot tolerate page

faults.

The call comes from either the Process Activation module or the Segment Acti-

vation module at a time when page faults are permitted.

"Start meter" uses the AMT hash table to search for an entry for account. If

an entry is found, the use count in the entry is increased by one. If no AMT

entry exists, one is created and initialized with a use count of 1.

"Star;_meter" returns a relative pointer, amti, to the entry in the Active

Meter Table. This index will be used by the metering calls to find the AMT

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BO.1.08 PAGE 2

entry in order to record resource-usage figures. The index is stored in the

AST entry or process data block.

.

1)

—

2) stop-meter (amt2) err, code)

This entry is called whenever a process or segment becomes inactive, to indi-
cate that the AMT entry may possibe be freed, if no other process or segment

is using the entry,

"Stop_meter" decreases the use count in the AMT entry specified by amti by
one. If the count is non-zero, the program returns. If the count becomes
zero, then the entry can be freed; ""stop_meter" copies the entry onto the
AMT update list, removeg, entry and its hash table entry, and signals

A Gt
a wakeup to theQ@E§>update process so that the copied entry will be updated to

the account's Account Data Segment.

The Account Update Process

The Account Update Process is responsible for copying entries from the Account

Update List to the Account Data Segments.

The main routine of the process operates in the administrative ring, calling
hardcore-ring subroutines when it is necessary to access the Account Update

List. The administrative-ring procedure is called by
call acct_update procs,

when the accounting subsystem is initialized. It does not return until system

shutdown time.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION BO.1.08 PAGE 3

The account Update Process is normally blocked, waiting for a wakeup from
subroutine "stop_meter", signifying that an entry has been made in the Account
Update List. When such a wakeup is received, it calls into the hardcore ring

as follows:

call get _acc_list$start (ent,flg);

This call locks the Account Update List (a "block-lock") and returns the

first entry. If the list is empty, as a result of "start meter" having deleted

all entries, flg is set to non~zero.

For each entry received from the Account Update List, the process attempts
to lock the Account Data Segment and insert the information. If successful,

it calls
call get_acc_list$continue (ent, flg)

this call deletes the entry from the Update List and returns the next entry,

if any. If the process cannot lock the Account Data Segment, it calls as

follows:

call get_acc_list$skip (ent,flg); 2§

which doesn't delete the entry, but advanced down the list.

When flg is returned non-zero, the Account Update List is empty, and the

process calls
call get acc_list$finish; O

to unlock the list. 1If then calls the wait-c dinator to wait for more

wakeups.

MULTICS SYSTEM-PROGRAMMERS' MANUAL SECTION B0.1.08 PAGE 4

Interlocking

In order to prevent confusion in the use of the AMI, both "start meter" and
"stop_meter" must lock the AMT Hash Table before referencing the AMT. This
is a "block-lock'", which prevents an entry for an account fram being added

and deleted simultaneously.

In initializing an AMT entry, "start_meter" must fill in the current residence
on each secondary storage device. The correct value is either in the Account
Data Segment or the Account Update List. "Start_meter" must therefore lock
both of these segments, again with block-lock calls, before creating an AMT
entry, and must search the update list for an entry for the account. If an
entry exists on the Update List, its values are the correct ones, and the
Update List entry should be deleted. If no entry is found, the Account Data
Segment is up-to-date, and its secondary storage residence figures are to be

used in initializing the AMT entry.

"Stop_meter’ never references the ADS, and so doesn't need to lock it. It

must lock the Update List.

The Account Update Process must lock the Update List and the target Account

Data Segment, in order to avoid conflicts with "start meter" and "stop_meter",

o WV v

| ook it |
‘&‘ e ¢
L&m‘c uPc(aZta,. s

AN
el - R r\ —
\(\a&L(&C(+ e m:‘*\ Pg‘a%ﬁm o ot z:r;ywc‘gmw

~'S€avcln Lo, owile t vp it 00t “@Wd ade date

“{{3 st s;i &
S

wé vu»' “{\vo Q-k— { s
T meQzQ “-"f"v& ‘\] ke\:‘(’ (Vo"n

del ”tb_ updats V‘
QLY ' [Wacts ,

\ call a_,.o\(luu’w 1>1 \7& _(‘{QQJ/F& |

5

—]

i s o T

filledTy |

L | |

(vuled k q&sg;o];.&i;; L—{‘:f

{[“:f !{,{_sgv v \“’"’T—{ f

b ;7 i J ST}{ ‘Hl w«mhw

< j>) Qv\(oc‘c Wt "£

()

L P

' woj

9{1(\;4 H.em'f{
Yy
[kte |

-

. ! CQ’P\/ + C(EQV cu,:[g(

$

| Pt e ch freas (o]

i
ﬂ:) Wyt TToy lon u:Uj? |
- “~ J— e BN L ST) S

oy o

7

Lo gotocltidat |
%w‘ \ Wzﬁiw o o \:‘ (L,,;«?f;; {.; C@C E" (ﬂ Ci \) { ‘4 mmmmm -

/

e&a’f& g - ads /

[

| | N =
} ; e

2 ﬁdl‘axc lvafislrf: (g&'k_uc Q;s"‘ i oy 42 3

PO V. AN P —

o _F]
'] . : to é A e o
z _o ! f»]e-*q.uls;t éﬁ “f el f'd :

——— \—[
- 3 ‘
‘{"' L R : -

T (/L,Q,.w O.CCOU ut'(' c)'/“'_) d(;ﬁ't; =g CLE S
{ {

