A L

' To: . ~ -~ Jeryy Saltzer

"~ Bob Daley
Corby

_ Ted Glaser
Carla Marceau

From: - Art Evans
‘Date: . June 8, 1967

A basic concept in the Mark II scheduler is the idea of an interaction.
-As _it happens, it is not wimwhiesmigms® immediately obvious just what an

. interaction is in Multics, or how to tell when one has taken place. The

" attached document attempts to raise some of the relevant issues and to

~ suggest a «imsigimmm possible solution. Comments are requested.

uses
The second Multics scheduler s a multi-queue, CTSS-like algorithm. 4@ Basic *
m— He ides of v
wimmet» this algorithm is,an interaction. Intuitively, it seems that -

an interaction takes place when %hm a user, seated at a console, has completed

" - a "think time" and has wim given the system something® to do. A basic

idea in Multics is that such a user should be favored, at least to the
! .J‘cltac(alP«p.

ext>a paiority He wext Fime

he s

extent Of giVing him AR G S it T Y e i
eomwemigE). The mechanism of favoring him is not relevent here == instead,
we are concerned with just what an interaction is and how we can tell

one has taken place.

. This problem has no real counterpart in CTSS. There, sk an interaction

- 18 defined to take place whenever a program goes into "input wait'" status.
an aspect of Cris Het f{cuv-‘vu.r.)

T R,

mny ¥

A

(Output wait also produces an interaction =--
In the natu;-e of things, a CTSS program can be in input wait only if it is
| waiting for console input, and it is em reasonable to regard the arriva}l
of that input as motivation for high priority scheduling. (One can "beat"

the system with judicious use of interconsole messages.)

Because of the read-ahead feature in Multics, it is harder to tell just

Wk when an interaction has taken place. We want to be sure that an

interaction is reported only when g e P e R o
(a) -a:‘“érocési'svﬁiﬁst‘ ‘bl_Ao‘ck ‘itself:f&:"f:‘:iack‘of_ console input, s _and _ .

“ ;_>(b)' the input wme® actually affi%res from the device.

/} . L]

‘The problem has to do with the diffuseness of the code that processes

console input. Let @ us consider the wwwgmyx case of input from a console
with type-ahead At some stage the working proces}s asks for input. In
due course, 0. Device Strategy Module (DSM)R;ﬂPr;c:;Ig 1 considers the request.
" -If there is available text that has been & it is merely returned to
the working process. If not, ¥ however, the DSM must wait for text,

by c‘alli.ng the Wait Coordinator. It is at this time thaf R the DSM knows

that there is the possibility of an interaction. (As we will see, events

may transpire that result in no interaction's taking place.) ‘ErRSE=Smmc

- The. DSM actually gets input from a Dev1ce Control: ”olul& Coen) ® i1 ey with
which it communicates via suitable Event Channels and shared data bases.
. To simplify "a' complicated situation, the DSM leaves its request in

‘ ey Dcn

coded -Fcrw in a place available to the W and then informs the ®8# of

the existence of the request. Now we return to our case. B The DSM in

its request for the next line includes a bit indicating that the line

may well produce an interaction. Normally, when the % gets ammwssming data
for a process, it makes it available _i.nh: shared data base and calls

wakeup on behalf of the s working process. In the case when the interaction

pernt
bit m is on, however, the EF calls a special entry of wakeup (or, perhaps,

supplies awspecial parameter) to indicate that the working process has 2pparen”?/y
Hen
experienced an interaction. Wakeup will,set an interaction bit in the

working process' Active Process Table (APT) entry before calling ready_him.

The working process' scheduler, observing this bit, will take appropriate

o L

Torecoup 2

- scheduling acyion and then reset the bit. The cycle is complete. , The DSM,

asked for input when there is none, sets a switchg indicating that an

. psn SA-:'/“‘-"‘ .
&mw interaction is possible. The observes the #% and sets a bit in

the APT indicating that the interaction has taken place. The scheduler®

- - then gives | the user special action as desired and resets the bit so that

the user will not be given special consideration twice for one m interaction.

Although it should be clear that the‘ scheme desc_ribed will work, the
perceptive. reader should have the feeling that ® it is overly complicated.
However, all of the complexity is necessary, as we now show. St

pcn take

wmmmmmi» We first show why both the DSM and the ¥NS must vssstismmes part

in)
. wh the decision, and we then present some more subtle problems.

v pcn ‘
It would not be possible for the B alone to detect an interaction. Consider

DCn
the situation in ® which the @# indicated an interaction whenever it called

- wakeup on behalf of a process. The clever user will, in his wotking process,

start the I/0 system in read-ahead input mode, and then go wisk about a
long computation. The man at the console can then type carriage return
every few seconds, secure in the knowledge that he is sismsamm thereby moving

ear,l. Fime
his working process to the top of the queue. (The working process smw never

A
asks for input.) What this solution misses is the ability to know when
the working process mmmiwempespowly cannot proceed without input.
Sisnsim— in -

There are also problems in trying to detect interaction $# the DSM alone.
One might propose the following solution: On realizing that input is
requested and not available, the DSM before going blocked would set an

interaction bit in the process' w APT entry. This would then entitle the

process to high priority on its next scheduling. Unfortunately, this

L‘)w

solution also & can be beaten Setting the interaction bit this way has the
effect that the process gets priority on its next scheduling, no matter
‘why the scheduler is called. The clever user arranges to have some other

. gy friend ly process send his working process w periodically esssamsn,

over an @ Event Call Channel.
Then the working process would ask for@ input every two minutes. The person
‘would carefully keep his hands off the keyboard so that wisssmm these input
bt

requests would all produce calls to block with the interaction,set, and

_ theﬁ the friendly event would result in scheduling with priority.

. benm
It should now belclear that both the DSM and the BS® must contribute to

the decision that an interaction has transpired. The DSM knows that

work cannot proceed without input, ssmd the Dfﬂi‘ knows that input has arrived,

and both Smmsistes are needed. There is wmm ome more problem: Consider the

interactive user who, in typing, ''gets ahead" of his process. That is,

he supplies data faster than the process, considering the share of the

processor available® to it, can eat it up. Stated differently, in the

quantum available to it the process does not use up all wie available input.

Then on succeeding executions things- are worse, since each is at 1lower
(Mis problem existr su CTSS)

praoority., In some sense it seems intuitivedmesimms that this user is

interacting and -jfentitled to mmmp preferential treatment. Unfortunately,

however, ther;«; kn‘oe way to give him w8 priority without openisg - an

immense loophole to beat the system. We must stick to our decision that

an interaction has taken place only if the process cannot proceed without

input and if the input then becomes available.

vinput. (Clearly, the process was proceeding.) This reseiewEmm

" Firm &tisb adherence to this principle produces one more change to the algorithm

as described. We said that wakeup, when called at its priority entry, would
set the interaction bit in the working process' APT entry before calling

ready_him. We now add the proviso that it do so only if the working
ohich

a
' . process is currently blocked. ®mm Consider e process, blocks waiting for

input, and suppose that while waiting an event arrives for it on an Event

. . ‘/'uph-/- . .
Call Channel, producing a wakeup. The Jmise comes from the console while

‘the process is either ready or running as a result of this wakeup. We

do not in this case give priority because &t one critical requirement for

an interaction is missing: that the process be unable to proceed without

part of

" the algorithm does not close any loopholes, but it dewwelessiss is consistent

~with annouxced principles.

b

A féw problems ssm¥m remain:

1. For there to be an interaction, must the input come from the command
- console #mm or is any attached console good enough?
2. Presumably the Multics equivalents of QUIT and RSTART should produce

) \ﬂl;n, QOUIT should Lc_froc\c/‘foﬂ Wikl biph prioridy.
an interaction.A’We have yet to see how.

3. We do not yet 4 know how to call wakeup so as to indicate that an

@ interaction has taken place.

