i

s
N

5¢ u
u!“xlk

A

Y
S

Satter

DRAFT: 9/12/67 i
Cormmants

‘GYG“"A A UOUN oy ?U'u'v-b .

Pre-emption
, . JwJ :
There are two issues concerning pre-emption €8 the scheduler: The first

has to do with the policy issues of deciding under what circumstances
e
pre-emption should take place. The second has to do with‘mechanism by -

which the pre-emption actually transpires. We consider first the first.

In general, the scheduler berforms a pre-emption when the précess for which
it is working seems enough greater in priority than a process which is
currently running that the currenély running process should be stopped in
favor of the process for which the scheduler is working. 1In CTSS the
issue is a good deal easier to resolve.wyﬁg}e the criterion is as follows:
The process being scheduled will pre-empt the procéss currently running if
the process currently running has already executed for more time than the
process being scheduled is asking for.. For example, suppose we are about
to schedule a process to run for 8 seconds. If the process currently
running has only run for 7 seconds, no pre-empt%?n will take place. How-
ever since the scheduler is invoked ;nd pells éz/every quantum, one second
‘ (curren
from now the scheduler will observe that the wzEm process has run for 8

seconds and that a process in a queue wishes 8 seconds. At that time, there

will be a pre-emption.

b

This concept does not carry over very well into Multics. For one thing

QEEere is no pol%igg,iso the decision to pre-empt or not to pre-empt has

to be made at the time the scheduler is first invoked. Secondly, the

issue is more complicated because there will several running processe;f;ny Qfg&f“a
given time (as many as there are processors in the system). £;;;§i;gcit X&Jb gwf”é*.
is rather difficult for the scheduler to determine how long a particular ';vafuﬁlgujz
process has been executing on a processor since it was last scheduled. Yy S

Page 2

Since '"time", as far as the scheduler is concerned, is measured in memory
addresses, the only way it could get the desired information would be to
know what value the processors time register had when initially loaded
aad what value it currently has. The forwer datum is available in the -
A2T, but the latter datum could only be read from a register in another
. S1E
piocessor, an impossibility. An approximation to desired value could be
’—__-—_—A

achieved if the time At which the process began running were available -
g"/f;/(
memory accesses. This possibility does exist since there is an APT entry A&”°Urb

WL.

in the APT. We could approximate by calculating microseconds rather than

)
celled time_last_run. We could establish the convention that this entry %::%Jkr
would contain the time running began for all processes which are in
2

running status. There seem to be serious race conditions in accessing f% 2

this sort of data, however.

A convenient possibility for Multics, considering the data bases available,
would be for a pre-emption to take place if the process being scheduled
was to go into a queue higher than the queue number of a running process.
Thus the scheduler working for a process which it was about to put into
queue 4 would perform a pre-emption if there was a process running in
queue 6. Question: Should it pre-empt a process in queue 5? The answer

is probably no, although that is not clear.

R difficulty with this approach is that a process may be pre-empted after
it has executeé%;LL~a£~lO or 15 microseconds. Doing so involves a rather

hizh overhead.

Page 3

We consider now the actual mechanism by which the pre-emption takes
place, assuming that we know under what circumstances we wish to try

Lo pre-empt. Actually we assume that pre-emption is done by a black

box; The scheduler calls a suitable module which does the pre-emption. g
What we are concerned with here is what happens next. It should be
understood that a process which has set interlocks on cr.ifical data bases
(i.e., a process whose blogk_lock_count is non-zero) is to be scheduled
with high priority. Suppose we are scheduling a process in queue 5,

and observe that there is now a process running in queue 10. Clearly we
pre-empt him. Unfortunately, when the target process of the pre-emption
receives the pre-emption, it will call the scheduler from restart. As-
sume that the scheduler observes at this time that &® block_lock_count
is non-zero. It will then schedule into queue 2 (say). Thus the pre-emption

Jor H< proessrprt 1uty
has been transmitted, but it did &9 no goodAW queue 5. This o7 of Fhing Srems ouan

wore sevions £ Heve r ane Hexr process in rueve 7 it could hive been PYe-<mpheof
There are several possibilities. One would be for the scheduler to look

ai: block_lock-count of the receiving process before sending the pre-emption.
II this datum were non-zero, the scheduler would select another process for
pre-emption. The difficulty here is the posstbilify of race conditions. The
scheduler in one memory cycle could find block_lock_count to be zero, while
it would be set g® non-zero in another cycle or two. Thus by ﬁhe time the
pre-emption was received, thewtarget would have priority. It seems possible
tc obviate this problem with a suitable interlock scheme, although doing so
seems rather complex. Another possibility'is to ignore this problem en- -
tirely. Thus the target process in the examp%e_just given would indeed
reschedule itself in.queue 2, but it would do so for only a small burst.

As soon as this burst were done, the process originally doing the pre-emption
would presumably be at the top of th ready list and would run."Thusly,

Tty e
et SN e 2 e e

S T S s s vt e

(o

Page 4

the pre-emption would take longer than the sender had in mind, but the

delay does not seem excessive. At the moment this approach seems to be

the most plausible one to use. /m’“ heyf ﬁ/;rAJL
Lf"XN JLA— pax}*fl’g
M&“& W“‘W-
e

w
Sl ‘

pe et

