February 15, 1968

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Project MAC

To: Prof. F. J. Corbatd
Mr. R.C. Daley
Prof. J.H. Saltzer

From: Prof. Arthur Evans, Jr. ' |

Subject: Requirements on Multics for the Mark-II Scheduler

\
Although the design of the Mark-II scheduler is by no means

complete, it is clear that its successful implementation will put
certain requirements on Multics. In particular, the detection of
an interaction will place requirements on the I/0 system and the
traffic controller. Attached is a somewhat discursive document
explaining what these requirements are and why they are necessary.
Briefly, however, the following is required:

1. When a working process requires input from the command
console, and when no such input is available in the data
base shared with the device manager process, then the
working process in its request for more data mustinclude
a bit indicating that an interaction may be about to take
place.

2. When a device managing process supplies data in response’
to a request such as the above, it must call "'wakeup" on
behalf of the working process with a special parameter
indicating that an interaction has taken place.

3. Wakeup must be able to pass on to the scheduler of the
working process the fact that an interaction has taken place.
This can be done via a parameter or any other way that seems
suitable. It does so only if the process is blocked.

The attached paper details the reasons for these requirements.



Detection of an Interaction in Multics
Arthur Evans, Jr.

February, 1968

Introduction

The second Multics scheduler will use a multi-queue, éTSS-
like algorithm. Basic to this algorithm is the idea of an interaction.
Intuitively, it seems that an interaction’takes place when a user,
seated at a console, has completed a "think time" and has given}the sys-
tem something to do. A basic idea in Multics is that such a user should
be favored, at least to the extent of giving him extra priority;the next
time he is scheduled. The mechanism of doing the favoring is not rel-
evant here--inatead we are concerned with just what an interaction is

and how we can tell that one has taken place,

This problem has no real counterpart in CTSS. There, an
interaction is defined to take place whenever a program goes into
"input wait" status. (Output wait also produces an interaction --

- an aspect of CTSS that many find curious.) .In the nature of things,
a CTSS program can be in input wait only if it is waiting for con-
sole input, and it is reasonable.to regard the arrival of that input
as motivation fbf‘high priority scheduling. (One can '"beat" the

system with judicious use of interconsole messages.)

The Strategy Eq he Used vf«p)&ﬁ
 Because of the read-ahead feature in Multics, it is harder \ bJV?fﬂJq :
to tell just when an interaction has taken place. We want to be sure o
that an interaction is reported only when
(a) a process must block itself for lack of console input, and
(b) the input actually arrives from the device.
The problem has to do with the diffuseness of the code that processes
console input. Let us consider the case of input from a console with
type-ahead. At some stage the working process asks for input. 1In due

course, the Device Strategy Module (DSM) in the process' Ring 1 con~




J
2
|
siders the request. If there is enough available text that has?al-
ready been typed, the text is merely returned to the caller. If not,
the DSM must wait for text by calling the Wait Coordinator. Itfis
at this tine that the DSM knows that there is the possibility of an |
interaction. (As we will see, events may transpire that resultiin
no interaction taking place.) j |
!
The DSM actually gets input from a Device Manager Process
(DMP) with which it communicates via Event Channels and shared data
bases. To simplify a complicated situation, the DSM leaves its request
in coded form in a place available to the DMP and then informs ﬁhe
DMP of the existence of the request. 1In the situation described in
the previous paragraph, the DSM in its request for the next line in-
cludes a bit indicating that the line may well produce an interéction.
Normally, when the DMP gets data for a process, it makes it available
in the shared data base and calls wakeup on behalf of the working pro-
cess. In the case when the interaction bit is on, however, the DCM
calls a special entry of wakeup (or, perhaps supplies a special par-
ameter) to indicate that the working process has apparently experienced
an interaction. Wakeup will then set an interaction bit in the work- ‘
ing process' Active Process Table (APT) entry before calling ready_
him. The working process' scheduler, observing this bit, will take
appropriate scheduling action and then reset the bit. The cycle is , |

complete,

ol
To receup: The DSM, asked for input when there is none,

sets a switch indicating that an interaction is possible., The DMP
observes the switch and sets a bit in the APT indicating that the

interaction has taken place. The scheduler then gives the user

special action as desired and resets the bit so that the user will

not be given special consideration twice for one interaction.

Justification of the Strategy

,Although it should be clear that the scheme described will

work, the perceptive reader may well have the feeling that it is ov=-

erly complicated. However, all of the complexity is necessary, as

we now show. We first show why both the DSM and the DMP must take



3.

i
|
|
i
i
i

part in the decision, and we then present some more subtle problems.
1

|
It would not be possible for the DMP alone to detect én

interaction. Consider the situation in which the DMP indicatedian
interaction whenever it called wakeup on behalf of a process. The
shrewd user will, in his working process, start the I/0 system in <
read-ahead input mode, and then go about a long computation. The (Idi A
man at the console can then fype carriage return every few secoﬁds,
secure in the knowledge that he is thereby moving his working pfo- hﬁ:&:é
cess to the top of the queue each tine. (The working process néver qwﬂﬂﬁ‘” -
asks for input.) What this solution misses is the ability to kPow

when the working process requires input.

There are also problems in trying to detect interaction in
the DSM alone. One might propose the following solution: On realizing
that input is requested and not available, the DSM before going blocked
would set the interaction bit in the process' APT entry. This would
then entitle the process to high priority on its next scheduling. Un-
fortunately, this solution also can be beaten. Setting the inter-
action bit this way has the effect that the process gets priority on
its next scheduling, no matter why the scheduler is called. The
shrewd user arranges to have some other friendly process send his
working process an event periodically over an Event Call Channel.

Then the working process would ask for input every few minutes. The
user would carefully keep his hands off the keyboard so that these
input requests would all produce calls to block with the interaction
bit set, and then the friendly event would result in scheduling with

priority.

It should be clear that both the DSM and the DMP must con-
tribute to the decision that an interaction has transpired. The DSM
knows that work cannot proceed without input, the DMP knows that input
has arrived, and both are needed.

There is one more problem: Consider the interactive hsefw}

who, in typing, ''gets ahead" of his process. That is, he supplies



data faster than the process, considering the share of the procéssor
available to it, can eat it up. Stated differently, in the quantum
available to it the process does not use up all available inputt Then
on succeeding executions things are worse, since each is at lower pri-
ority. (This problem exists in CTSS.) 1In some sense it seems intui-
tively clear that this user is interacting and is entitled to p#ef-
erential treatment. Unfortunately, however, there seems to be ﬁo way
to give him priority without opening a lgophole to beat the syséem.

We must stick to our decision that an interaction has taken place only
if (a) the process cannot proceed without input and (b) the inpﬁt then

|

becomes available. |

Firm adherence to this principle produces one more change

to the algorithm as described. We said that wakeup, when called at

its priority entry, would set the interaction bit in the working pro- &KJ*,7(%
W};v‘u)

cess' APT entry before calling ready_him. We now add the provis?//,
that it do so only if the working process is currently blocked.//Con-
sider a process which blocks waiting for input, and suppose that while
waiting an event arrives for it on an Event Call Channel, producing a
wakeup. The desired input then comes from the console while the pro-
cess is either ready or running as a result of this wakeup. We do not
in this case give priority because one critical requirement for an
interaction is missing: that the process be unable to proceed without
input. (Clearly, the process was proceeding.) This part of the al-
gorithm does not close any loopholes, but it is consistent with an-

nounced principles.

A few problems remain:

(1) For there to be an interaction, must the input come
from the command console or is any attached console
good enough?

(2) Presumably the Multics equivalents of QUIT and RSTART
should produce an interaction. Also, QUIT should be
processed with high priority. We have yet to see how.

(3) Output wait produces an interaction in CTSS. Should

the corresponding Multics effect produce an interaction?

N

2

Wy Y

e



