DRAFT: for approval
ldentification

Programmed Store A Conditional

V.A.Vyssotsky, 1/26/66

Purpose

The proposed new instruction stac (store A conditional) will
not be implemented on initial delivery of the first ©6U45s.
To cover this gap, the operation code 007 (mmek) will be
reserved to serve the same function, and a fault-handling
routine will be programmed, as described below to simulate

the stac instruction,

The instruction stac Y functions as follows. |If C(Y)#0, set
the zero indicator OFF., If C(Y)=0, set the zero indicator
ON, and then replace C(Y) by C(A). The instruction uses a
read-alter-rewrite cycle, and is not privileged. The chief
task in simulating the instruction is simulation of a
read-alter-rewrite cycle; no interrupts or process faults
may occur during the simulation, except as described below.
To avoid undesired interrupts, interrupts must be inhibited,

$s0 the simulation routine must run in master mode. To avoid

MULTICS SYSTEM-PROGRAMMERS' MANUAL Section

undesired faults, partial interpretation of an appending

cycle must be done.

In order to prevent conflict between two or more CPUs
simultaneously simulating a stac instruction with the same
operand address, the simulation routine employs an interlock
to delay all but one of the competng CPUs at the beginning
of the simulation procedure, and to sequence the CPUs

through the procedure one at a time.

The data and tables required by the procedure include:
a) A single word, cpulock, shared by all invocations of
the procedure.
b) A 'transparent' segment, coreaddress, consisting of
a segment descriptor and page table such that each
absolute address in core corresponds to the word in
segment coreaddress whose word number is the
absolute address.
Items a) and b), and the procedure described below, must be

resident in core at all times

A procedure-like description of the stac simulator is as

follows,

1. Save the contents of bases, registers, control wunit and
descriptor base register in the concealed stack. Enter

master mode, and inhibit interrupts.

MULTICS SYSTEM-PROGRAMMERS' MANUAL Section

2. Set the lock cpulock, and delay until it is set, using

the sequence

aos cpulock

tnz *-1

3. Clear associative memory.

4. if the saved control unit mode is absolute or temporary
absolute, go to step 19.

5. Retrieve the effective segment number, esegno, and the
effective word number, ewordno, from the saved control
unit status.

h. Retrieve the bounds field and the block size bit from the
saved descriptor base register contents.

7. Perform the bounds test for the descriptor segment, using
esegno. |f a bounds violation is found, go to step 30.
Else,

3. Retrieve the paged/unpaged bit from the saved descriptor
base register contents. |If it is unpaged, go to step
10. Else,

9., Retrieve the appropriate page table entry, accessing it

through segment coreaddress. If the <class is directed

fault, or if the content of the class field is invalid, go
to step 30, Else,

10. Compute the address of the segment descriptor, and
retrieve the descriptor, accessing it through segment

coreaddress.

MULTICS SYSTEM-PROGRAMMERS' MANUAL Section

11.

12.

13)

14,

15,

16,

18,

Check the class of the data segment. If the class is
directed fault, or if the content of the class field is
invalid, go to step 30, Else,

Perform the bounds test for the data segment, using
ewordno, If a bounds violation is found, go to step 30.
Else,

If the data segment is unpaged, manufacture a dummy page
table entry descriptor field of class master procedure,
slave access permitted, write permitted, and then go to
step 15, Else,

Retrieve the appropriate page table entry, and check the
class. |If the class 1is directed fault, or if the
content of the class field is invalid, go to step 30.
Else,

If the mode of the stac being simulated was master, go
to step 19, Else,

If the logical nd of the descriptor master access bit,
the descriptor write permit bit, the page table entry
master access bit and the page table entry write permit
bit is zero, go to step 40, Else,

If esegno equals the segment number in the saved
procedure base register, go to step 19. Else,

If the effective class of the operand (see G.A.Oliver
memo of 7/9/65 for definition of effective class) is
master procedure or execute-only procedure, go to step

40, Else,

MULTICS SYSTEM-PROGRAMMERS' MANUAL Section

19.

20,

21.

22,

Fetch the operand, C(Y). If C(Y)=/0, set the zero
indicator in the saved indicator register OFF, and go to
step 21, Else,

Set the zero indicator in the saved indicator register
ON, and replace C(Y) by the contents of the saved A
register.

Reset the lock cpulock, using the sequence

lda -1,d1

sta cpulock

Restore bases, registers and control unit. This step

has completed the simulation of stac.

there are no steps numbered’3-29.

30.
31,

Load esegno into base bb, and ewordno into base bp.

Reset the lock cpulock, using the sequence

lda -I’d]

sta cpulock
do the instruction
1da bp!0

A fault will result. When (if) control is restored to

this point, go to step 2.

there are no steps numbered 33-39,

MULTICS SYSTEM-PROGRAMMERS' MANUAL Section

40, Change the operation code of the saved current
instruction to sta. Reset the lock cpulock, by the same
sequence as shown above. Restore bases, register and
control unit, thus restoring control to the user

program. The user program will immediately fault.

There are no step numbers above 40,

