MULTICS SYSTEM-PROGRAMMERS' MANUAL Section PAGE 1
FOR APPROVAL
d ification

Interlocks for Access to Shared Data

V. A. Vyssotsky, 1/21/66

lntroduction

In Multics a data base may have to be referenced by two or
more processes, and modified by one or more of those
processes, under constraints which preclude explicit advance
a2lanning of the order in which the various references and
modifications will occur. Among the data bases with this
property are page tables, file directories, facilities
assignment tables, the active segment table and the ready
list, as well as various data bases belonging to users.
Unless a systematic technique is used to control the
sequence of accesses to such a data base, errors are apt to
occur, For example, without control of the access sequence
it is possible for one process to reference a data item
while another process is modifying that item so that the
item is referenced at a time when its content 1is erroneous
or inconsistent. This section specifies the interlock
rechniques used for controlling sequence of accesses to
shared data of the operating system, and recommended for
shared user data. A discussion of various alternative
approaches to the problem may be found in the memorandum

'Controlling Independent Asynchronous Seizures of Shared



MULTICS SYSTEM=-PROGRAMMERS' MANUAL Section PAGE 2
Facilities' by V. A, Vyssotsky.

The stac Instruction

It is expected that a new instruction, Store A Conditional,
will be added to the repertoire of the 645 some time after
initial delivery. |If C(Y)£0, stac Y merely sets the zero
indicator OFF. If C(Y)=0, stac Y sets the =zero indicator

ON, and also replaces C(Y) by C(A).

At initial delivery of 645s not equipped with the stac
instruction, the operation code 007 (mmel4) will be reserved
for the same purpose, and the function of stac will be
serformed by a fault-handling routine. This routine is

described in detail in section .
Interlock S ificatio

.et d be a data base shared by two or more processes, and
modified by one or more of them., Associated with d there
will be a single word dlock, shared by the same processes,
used to interlock access to d. The privileges required for
access to dlock (e.g. master mode, chinese wall) will be the
same as those required for access to d. Thus, unprivileged
data has an unprivileged lock. The content of dlock at any
zime is either zero or the process id of some process. No
process may access the data d wunless dlock contains the
process id of that process. A process may alter the content

of dlock in only three ways:



MULTICS SYSTEM-PROGRAMMERS' MANUAL Section. PAGE 3

A) If the content of dlock is zero, any process may
write its own process id into dlock.

B) If the content of dlock is the process id of a
process, that process may set the content of dlock
to zero.

C) In error recovery situations described in section
» and only in those situations, a process may
replace by its own process id a process id already

contained in dlock.

Action C will not be discussed further in this section.
Action B will be programmed only at points where it is known
that the procedure being programmed is running as part of
the process whose process id is contained in dlock (e.g.
pecause this same procedure running in this same process put
the process id into dlock). Action B will be performed by
the sequence of code:

1da dlock

cmpa my_process_id

tnz error_routine

stz dlock
The stz will not be programmed without the preceding test,
hecause of the serious consequences of improper access to

shared data, and the difficulty of tracking down such

errors.

Action A will in most cases be performed by the sequence of

code:

lda my_process_id
stac dlock



MULTICS SYSTEM-PROGRAMMERS' MANUAL Section PAGE &4

tnz already_locked

but in a few cases will be coded as

lda my_process_id
stac dlock
tnz *-1

This second form will be employed only in those cases where

both of the following conditions apply:

in

a)

b)

the

The data base which 1is currently 1locked by some
other process is required for the standard
already-locked action described below, so that the
standard action cannot be taken, and

It is 'known' (i.e. specifications claim) that the
elapsed calendar time during which any one process
will keep the data locked is bounded and short (e.g.
200 microseconds). In particular, condition b
implies that no interrupts and no process faults can
occur in any procedure of a process while that
process has the data base locked.

standard sequence for locking data bases, the

zransfer

leads

tnz already_locked

to code which performs the following tests and

actions:

1)

2)

If the data base is locked by this same process,
take appropriate action (see below). Otherwise,
Place a wakeup request with the process which has

the data base locked.



MULT!CS SYSTEM-PROGRAMMERS' MANUAL Section PAGE 5

3) |f appropriate, place an alarm-clock wakeup request
for some time so far in the future that failur to
receive the wakeup of item 2 by then would be
evidence of error.

4) |s the data base still locked by the process with
whom a wakeup request was placed in item 2. If so,
block. Otherwise,

5) Remove the wakeup calls of items 2 and 3, or the

\

(et .4§ftwaFé\interrupts whiech may have resulted from
those calls. Then go back and perform action A.
Jn awakening from block with an item 2 wakeup signal, go

back and perform action A,

It can happen in some circumstances (e.g. in a user routine
for dealing with process faults) that a procedure attempting
to access shared data will discover that the lock is already
set by this same process. The action to be taken in these
cases is not standardized. Two extreme cases, however, are
specifiable. One extreme is the case where it is known
(somehow) that neither the access for which the lock was set
nor the one now desired can modify the data base d. In this
case the desired reference can be made, and the lock left
set, to be unlocked upon completion of the reference for
which the lock was originally set. The other extreme is the
case where it was not foreseen in planning that a process
might attempt to lock the data when that same process had
already set the lock. This is an error, and should be

treated according to the guidelines of section .




MULTICS SYSTEM-PROGRAMMERS' MANUAL Section PAGE 6

Multiple Shared Data Blocks

I't happens in some cases that a process must have two or
more shared data areas locked simultaneously. In order to
analyze these cases and establish standard treatment for
them, we must first establish some definitions and
terminology. Let us regard a process for the moment as a
sequence of accesses to addressible storage. If we focus on
the accesses to a particular shared data area d, we observ
that they occur in some fixed order, ald,...,amd. (Recall
that a process is the execution of a collection of
orocedures, not the collection of procedures, so that the
sequence of accesses to d during a process 1is unique,

although perhaps not calculable in advance.)

Considering any pair of accesses (aid,ajd) to d during the
process such that i is less than or equal to j, it either is
or is not permissible for another process to access d
between aid and ajd. We shall say that d is being used by p
(or p is using d) in the closed interval given by any
pair of accesses (akd,ald), k less than or equal to 1,
such that:
1) It is not permissible for another process to access
d between akd and ald, and
2) For all i less than k it is permissible for another
process to access d at some point between aid and akd,

and



MULTICS SYSTEM=PROGRAMMERS' MANUAL Section PAGE 7

3) For all i greater than 1 it is permissible for

another process to access d at some point between ald

and aid.
If any process p uses d at a time when d is not locked by p,
an error is likely. However, it is clearly desirable that d
should not be locked when it is not in wuse, Considering
only one shared data area d, the pre.pﬁ's two sentences
specify the points in each process at which the process
should lock and unlock d. However, this does not suffice to
determine when locking and unlocking should be done if a
osarticular process p uses (with the above definition

of'uses') data areas dl and d2 simultaneously.

Let d1,d2,...,dn be shared data areas. We shall say that di
requires dj if there is any process p which accesses dj
while p is using di. Observe that for each di, di requires
di. Observe also that di may require dj even though dj does
not require di. We extend the definition by induction: if
di requires dj and dj requires dk, then di requires dk.
(Note that di may require dj only because of process p, and
4j may require dk only because of process q, yet we still

say that di requires dk.)

The set of data areas dl,...,dn can now be partitioned into
subsets S1,...,Sm such that:
1) If di and dj are in the same subset Sk, then di

requires dj and dj requires di, and



MULTICS SYSTEM-PROGRAMMERS' MANUAL Section PAGE 8

2) If di and dj are in different subsets Sk, S1, then
ei ther di does not require dj or else dj does not
require di.
We shall call each subset Sk a data class. (Graph theorists
will observe that we have defined data classes to be the

strongly connected subsets of a directed graph.)

Our rule for interlocking multiple shared data areas can now
be stated as follows: Each data class will be treated as a
single data area, with one lock., Two distinct data classes
will be given separate locks. In many cases, of course, it
is difficult to determine exactly what data areas constitute
a data class. In such cases the criterion to be wused s
that treating several data classes as if they wer one may
cause inefficiency; separating two system data areas of the
same class and using separate locks for them may cause the
system to loop; separating two user data areas of the same
class and using different locks for them may cause the wuser

processes to block and not restart.

In order to reduce the chances that the system will loop,
three guidelines should be followed by system programmers:
1) Do not access customers' shared data areas while
using shared system data base.
2) When specing and programming a procedure, analyze
the requirements of each shared system data area
used by the procedure, determine the data class of

each such data area, and ensure that the «class s



MULTICS SYSTEM-PROGRAMMERS' MANUAL Section PAGE 9

locked and unlocked as a unit.

3) To reduce the complexity of analysis, enhance the
chances of doing it correctly, and Iimprove the
performance of the operating system, program ¢to

minimize the number of shared data areas that the

procedure uses simultaneously.

| ocks o s to Page Tab

A special case of shared data base which requires extra
attention is the problem of how to interlock page tables.
We shall consider the problem of changing a page table entry
to 'directed fault'. when it was previously of some other
class. All references to the page tables as data, of
course, can be considered as like references to any other
shared data area, but the page table may also be accessed
directly by the appending hadware. For this reason, it s
sometimes necessary to force one or more CPUs to «clear
associative memory., To get a CPU to clear associative
memory, you have to attract its attention, via an interrupt
or a connect fault., After the connect is issued or the
interrupt cell set, the page must be 1left Iinviolate 1long
enough to be sure that no associative memor§ contains a
pointer to it. This must be done either by counting off
'enough! time, or by waiting for a response from the
affected CPU(s), or by some combination. The safe strategy,
and the one to be employed, is to 1loop until a positive

response is returned,



MULTICS SYSTEM-PROGRAMMERS' MANUAL Section PAGE 10

For each CPU there will be a signal word reserved for
response to requests for clearing of associative memory, A
process, in order to set a page table entry to directed
fault, will perform the following actions in sequence before
making available for reuse the core block to which the page
table entry points.
1) Set the lock cell appropriate to the page table
regarded as a shared data base.
2) Set the page table entry to directed fault,
3) Set non-zero the signal words for those CPUs which
must clear associative memory.
4) Issue connects, or set interrupt cells, to those
CPUs.
5) Wait until each of the relevant signal words has
reset to zero.
6) Reset the lock cell which was set in step 1.
A CPU which receives a fault or interrupt signal to clear
associative memory will first do so, then set its signal

word to zero,



