GENERAL D ELECTRIC

COMPANY DEPARTMENT

13430 NORTH BLACK CANYON HIGHWAY, PHOENIX, ARIZONA 85023 . . . TELEPHONE 941-2900 DEER VALLEY PARK PLANT

May 12, 1966

Mr. Jerry Saltzer
Project MAC

545 Technology Square
Cambridge, Massachusetts

Dear Jerry:

Enclosed is a copy of our proposal for on-line performance monitoring in the
645, As it stands, this report is a preliminary attempt to establish both
hardware and software measures. The approaches outlined therein require
alterations in both the hardware and software.

We would appreciate your comments and suggestions,

Sincerely yours,

P

. Shemer

Sr, Systems Engineer

Modeling and Analysis Subsection
Systems and Processors Operation

JS:cm
enc:

VISIT GENERAL ELECTRIC PROGRESSIANG o A (l),u—{’ @,”5,455/ FPRESENTATION o AT THE NEW YORK WORLD S FAIR l@I

N

SYSTEMS DESIGN AND ANALYSIS MEMORANDUM

CATEGORY : 1- 645 ANALYSIS
) c) SYSTEM STUDIES

REPORT NAME: " PROPOSAL FOR ON-LINE PERFORMANCE MONITORING
OF G.E. 645"

DATE : APRIL 20, 19 =
I eenenal O ELECTRIC
OMPANY CONFDENTIAL
FO: U3 GF GE EMPLSYZI3 ONLY
Trees B SHALL NOT BE REPRODUCED ¥
SERIAL NUMBER 29 BN 'f.,‘j.‘ CONTALED N T S;—%A!t!._ 3
‘ ;/ ﬁ\(\lg\' Doy Vo 1 d g
AUTHORS = ~ T . A 2 U N A VL N SR R G &
I. EPSTEIN ‘
PR %

Vo
S ’/‘///u 8 ,,,,M /:.
// J. E SHEMER ¥

W

//:/4§f§i10/q{lél/w (;72;53 Y ;%j/fééf

G. A. USHI??EY/

ORIGINATED BY: MOZILING AND ANALYSIS SUBSECTION
SYSTEXMS AND PROCESSORS OPERATION

- Ly / ', . 7 - T Sy /
APPROVALS _ ~ ;U‘Z,JLZLQ;, /hpvfciv-li SN
J. DOBBIE ‘

INTRODUCTION

There is wide agreement that on-line performance measurement and
program tracing will be an essential activity on the MAC-BELL 645
Systems as soon as they become operational. In Reference 1, J. F,

Gimpel of Bell makes the following comments:

"Performance monitoring activities in Multics will probably
gserve at least the following purposes
(1) System debugging
(2) Compiling statistics to improve software strategles
(e.g., scheduling algorithm, paging algorithm).
(3) Real-time statistics gathering to affect parameterized
algorithms.
(4) On-line data gathering for users (provided safeguards
exist).
(5) Off-line and on-line data gathering to affect operations
(i.e., computer center) policy.
(6) Long range statistics gathering to ald in the(design
of new machines and new software. ‘
(7) Data gathering for purposes unforseen at system
design time."
Clearly Item 6 is of vital interest to the Advance 600 Line Project gyb-
section.Items 2 and 3 are vital to Modeling & Analysis Subsection,
more specifically to provide driving stétistics for the 645 - Multics

system modelsoz’3

The purpose of this note is to supplement the purely software performance
measurement proposals made in Reference 1 with additional hardware and
software recommendations directed towards supplying the information

in the form required by the G.E. Systems Engineering groups concerned.

1t is unfortunate that hardware modifications should prove necessary
so near to equipment delivery date. Three categories of monitoring

facilities can be provided on computer systems, viz:

a) built in; prototypes only

b) optional extra; all machines

c¢) built in; all machines

In the future it is recommended that considerable thought should be

given as to the correct monitoring policy to adopt

during the design stage.

I

the number of segment references completed in unit time.

However,

this figure can also be obtained from the memory cycle rate using

o UM omerformancs frndaw deenrihad

in 2.7,

Tha

~raressinn

R

Q)

2.

SUMMARY OF STATISTICS REQUIRED

2.1

2.2

2.3

STATISTIC CATEGORIES

The most urgently required performance statistics can be

grouped into three classes:

a) Associative memory performance
b) Central Processer performance versus memory interference

c) System and typical user software properties
Other classes of statistics, e.g. 1/0 system performance, may
well turn out to be very important, but they are not discussed

in this note.

ASSOCIATIVE MEMORY PERFORMANCE

The AM performance figure of greatest interest is the proportion
of times that a required pointer word is not found in the AM and
must be retrieved from core. This statistic is required, both as
an overall average over the current program load, and also as a

figure of merit for specified procedures and processes.

It would also be useful to obtain by direct measurement the
switching overhead; i.e. the extra number of core memory cycles
needed on average to reestablish the contents of the AM after a

transfer of contents, program interrupt or fault.

CENTRAL PROCESSER STATISTICS

The processing rate in any given processer is best defined by
the number of segment references completed in unit time. However,
this figure can also be obtained from the memory cycle rate using

the AM performance index described in 2.2. The processing rate

2.4

depends essentially on the "Instruction Mix" and on core memory
inter ference, apart from the speed of the processer itself.
Hence, instruction mix and, say, I/0 load on memory, should be

measured together with the processing rate.

The instruction mix is valuable information in its own right for

designing overlap schemes in future central processers.

The data desired from spot measurements made on processing rate
should be put into a semi-empirical model (under development) of

the 645 Central Processer in order to obtain the coefficients.

SOFTWARE PERFORMANCE

The software statistics needed to drive the 645 System Modelsz’3

include:

a) Total number of segment references for selected procedure
segments (or "subprocesses')

b) Page reference distribution function2 for selected paging
units

c¢) Proportion of references made by selected procedures to

each of their associated paging units.

Using the processing rate conversion factor described in Section
2.3, item (é), is relafed to the total time spent in selected
procedures or processes. This would give, for example, the
percentage of computer time devoted to Core Management, a quantity

directly interesting in its own right, as pointed out in Reference 1.

MONITORING SELECTED PROCEDURE

As noted in Section 2, it is sometimes desirable to gather statistics
on the total program load on the system, and sometimes desirable to

obtain statistics for selected procedures.

In order te monitor the entry to, and exic frem, the selectad procedurs
some special form of Call, Save and Return is necessary which passes
control temporarily to the Monitor and Tracing (MT). However, this
must be supplemented by monitoring of faults and interrupts to allow
for unprogrammed transfers of control. A scheme for carrying out this
task is given in Ref. 1 and would probably satisfyhthe modeling group's

Y

requirements.

There is a possibility, however, that statistic gathering might be
desirable on a procedure which is not a segment on its own right, and
is not entered via Call, Save, or Return. Provided thatuthis procedure
can be defined by a certain set of pages in a procedure segment, it
might be possible to isolate the procedure for statistic géthering by
tagging the corresponding PIW's in some fashion (cf. Secti&q 6.).

@

MEASURING ASSOCIATIVE MEMORY PERFORMANCE

In Reference 4, an approacﬁ for modeling AM is outlined. This particular
scheme has a number of disadvantages, namely; the input statistics required
for the model necessitate a detailed statistical characterization of the
software, and the time consuming Monte-Carlo simulation lacks flexibility.
Moreover, the amount of detail required to obtain a statistical character-

ization of selected software is, in itself, a major task,

An alternate scheme is to employ two hardware counters, One counter would
automatically count the total number of memory accesses, and the other
would accumulate the number of this total which were pointer word accesses,
Such a method affords an extremely flexible means of monitoring AM, since
the contents of both counters could be stored selectively under program
control during the execution of a tagged subprocess or process, Hence,
the proportion of times that a required pointer word is not found in the
AM can be obtained for épecified procedures and also as an aggregate
average for the current program load, With some additional "tracing
software," the switching overhead for selected processes could be
calculated through use of a'timed interrupt which would periodically

clear the AM to zero and return control to the interrupted procedure,

In addition, this use of counters to acculmulate memory cycles would
facilitate a means for charging processes on the basis of memory cycles

received and also provide statistics as to processer performance (see 5),

PROCESSER STATISTICS

If the two hardware counters referred to in Section 4. for accum-
ulating the number of memory cycles are incorporated in the processer,
then these counters together with a real-time clock provide the
statistics necessary to calculate the processing rate. Thus, the
processor is capable of méasuring its own processing rate over a wide
range of operating conditions,such as I/0 load, I/0 configurations,

memory inter-lacing, memory priority, etc.

As for additional processer performance measures, other counters

(or these same two counters) could be used to accumulate:

a) the proportion of memory cycles of a given type (RRS,
CWR or RAR)
b) the number of conditional and unconditional transfers
together with the number of instructions executed
¢) the accumulated time spent waiting for memory response __ iw Cjcksly
d) the number of instruction fetches and indirect word
fetches
e) the number of references directed to "tagged" pages
(providing a bit in the PTW is available for designating
a "tagged" page)

If only two counters are to be used, then it should be noted than an
accumulation of the total number of memory cycles goes hand in hand
with the measures a) -~ e). For that matter some combinations of

a) - e) are complementary to each other in that they imply other
relevant measures. Thus, there is a strong argument for more than

two counters - preferrably thrée or more counters are desirable.

7

This on-line statistical data gathering could take place thfgugh an extension of
-he present Timer Register in the GE-645 Processor. The préseﬁt

Timer is 24-bits long and, therefére, can count up to 16,777,216 memory
accesses. Theoretically, all the parameters to be measured, inasmuch as -
they are fractions of the total number of memory accesses, can be counted
by 24-bit counters. However, there may be up to 12, or more, such para-
meters and a considerable amount of hardware will be required. Also, the
Store Timer Register (STT)®instruction will have to be changed to store
four double words. A reasonable comprise is to have three 24-bit counters,
or four 18-bit counters and extend the STIT operation to one double word

(72 bits). One parameter, i.e., total or programmed memory accesses,

will always be measured. The other two, or three, parameters will be
selected by a jumper board. The Load Timer Register (LDT) instruction
will preset the Interval Timer as it does now and, in addition, will

reset all the auxiliary counters. The Store Registers (SREG) will

remain unchanged, i.e., the auxiliary counters will not be stored.

The measurement of the number of page table and descriptor segment
references, or of the proportion of memory cycles of a given type is

not expected to demand special logic since this information already
exists in the Processor. The measurement of the waiting time for memory
response does require additional circuitry. This is a measurement of
time in seconds rather than number of cycles. The time measured should
be that above the nominal response time ($INT to $PIN), which is about
700-800 nsec. A pulse trail of about 10 mc can be used for the measure-
ment. The counter itself, however, should use increments of 1.6 or 3.2
usec, since the average waiting time will be more than 100 nsec per
access. The measurement of the distribution of transfer loop lengths
requires additional hardware and may be better handled by software.

The measurement of the numBer of references made to. '"tagged" pages should

not present any difficulty since, to our understanding, bits are still

available 1r'fm‘f:w1:~e PTW. “ \0'/(, /Lb Q {, ’1‘

6.1

SOFTWARE CHARACTERISTICS

Total Segment References AR

In Ref, 2 a "subprocess" is characterized by the total number of segment

references required to complete its execution.

For a subprocess, Qi, this

statistic is denoted m,.

It will otten be possible to obtain m, for selected subprocesses by off-
. i

line inspection or analysis of the software. However, there will be a

residue of cases where on-line measurement will be required.

There are two problems involved:-

(a) Delimiting the subprocess on the on-line system,

(b) Measuring the number of segment references from start to

finish,

The first problem can usually be solved by use of the special Call, Save

and Return described in Ref, 1. Otherwise a page tagging technique might be
employed.

The second problem is to count segment references. Clearly the
additional hardware counter described in Section 4 which counted segment
references directly, and which could be stored under program control would
solve this problem in the most elegant fashioﬁ. However, using the processor

performance - measurements which give the conversion factor between segment

references and time, the existing timer register could be used to obtain

this statistic indirectly,

6.2 THE REFERENCE DENSITIES

The proportion of times that some subprocess, Qi’ say, references

an associated paging unit, Uj’ say, is denoted h, The problems

of measuring some particular hij are first to de;ine the paging
unit, and secondly to count references to it. If the paging unit
is referenced during more than one subprocess it will also be
necessary to establish which references were made during the sub-

process, Qi’ under investigation.

It is recommended that the paging unit is defined by tagging all
the correspoinding PTW's in the segment or segments which comprise
it. This tag may be either a new Directed Fault or a signal to
the hardware monitoring facilities as descriﬁég below.

\
To obtain hij by hardware monitoring, an additional counter is
required which would be incremented whenever a suitably tagged
PTW was referenced. This could take place even though the PTW
was retrieved from Associative Memory rather than Cé;e Memory.

§
§

The other scheme, the Directed Fault technique, could\be carried
A

e

fault would occur to part of the Monitor package. TheﬁMonitor routine

out roughly as follows for a tagged data paging unit.\\When any

§
tagged PTW was referenced during an operand fetch, a Q}rected

would update its statistics, and then manufacture a copy of the
PTW without the fault bit and place it in a special segment which
is referenced only by the Monitor Routine. Monitor would then
modify the original instruction in such a way as to reference the
required page in the dummy segment, and then give an RCU to

LA

continue processing.

10

There seem to be some problems in using this technique to intercept
instruction fetches as well as operand fetches, and this aspect is

now under study.

The hardware technique obviously énly allows statistic gathering on as
many P.,U's as there are special counters available, while the software
system is much more flexible, On the other hand, running selected
portions of the software in interpretive mode might slow down some
system software’modules to a point at which overall system performance
was unacceptable, For this reason, there is a strong case for having
the additional hardware counter or counters available, even if the

alternative method is sometimes adopted,

/]

The Papge Reference Distribution Function (P.R.D.F.)

As described in Reference 2 and 3, the P. R. D. F.,“Fij ¢ x, pj)

defines the pattern in which a subprocess, Qi’ referénces an associated

paging Unit, Uj .By implication, if there are qJ pages: of Uj in
core, 1= F (qj’ p.) gives the probability of a m1551ng page fault

\

when Q references Uj’ |

i

\

As shown in Reference 4, the P.R.D.F. can sometimes be obtained by
direct computation, knowing the structure of the software, 'This
method will be most useful in the case of Multics data bases, where
the search or referencing procedure is well defined, and Where

the use of an interpretive trace routine might significantly affect

system per formance. Otherwise on-line measurement is required.

The problems of measuring the P.R.D.F. are first to define the
paging unit or units of interest, and then to find the P.R.D.F. if
the paging unit is referenced by more than one subprocess, it will
be necessary to distingu&sh references by the subprocess, Qi’ of
interest using the special form of Call, Save, and Return (ascribed

in Reference 1.

As in 6.2, there are two methods of making the measurement,
a) Using a special counter which is incremented whenever
- a tagged page is referenced

b) Using a directed fault to the monitor package

Using the first technique the only measurement which can be made is
the number of segment references to the selected paging unit before
a missing page fault occurs. Since the Monitor package can

also keep track of q the number of pages of the selected P U in core

] .
at any time, it would be possible to build up the function F'j (%, Pj)
i

over a period of time.

/2

The alternative interpretive trace technigue resembles closely

the method proposed in 6.2. Once again the pages of the selected

Paging units or units would be tagged with a special directed fault

to the Monitor. After statistic gathering, Monitor would manufacture

a copy of the tagged PTW in a dummy segment and carry out an R.C.U. order

with the stored instruction modified to reference the dummy segment.,
Statistic gathering can be carried out as follows:

If the page numbers (or page number and segﬁent numbers, when the
P. U. spans several segments) of the most recently referenced page
in the P.U. is stored, then (after each reference to the P.U.) the
Trace Routine can compare this number with the page number of the
newly referenced page. Suppoée that out of a total of n references
to the P.U., there is a reference to the most recently referenced

page on m occasions. Theh, from the definition, F(l,p) = m/n.

More generally, suppose that a list of the most recently referenced
pages is maintained, where x is any number less than or equal to
the number of pages of theP.U. currently in core. Then the
proportion of references to this set of x pages gives F(x,p). The
set of x most recently references pages must be updated by the
Trace Routine wherever a page is referenced which does not belong
to the set. Clearly the computing required to obtain F(x,p) for
all x<p, where p = the total number of pages in the P, U., is
considerable, However, it should usually be sufficient to measure
F(1,p), F(2,p) and say, F(p/2,p); F(p, p) is unity by definition.
Then F (x,p), which is a smooth monotonically increasing function of

X, can be obtained by interpolation.

As in 6.2, the hardware alternative is much faster to run. At
the same time statistic gathering may be very inefficient since Monitor
has no control over the number of pages of the selected paging unit present

in core at any time. By contrast, the software solution can gather

/3

statistics on Fij (x, pj) for any selected value of x, provided
there are more than x pages of Uj in core for a significant

processing time.

On balance, the software solution is preferred. However, the

additional hardware required is identical with that necessary to monitor
the reference densities hij (Section 6.2), and hence there is a good
case to use the hardware solution when the use of an interpretive

trace would prejudice the overall performance of the system.

/4

REFERENCES

1.

1Software Tools for Monitoring and Tracing in Multics”;%

I
J. F. Gimpel , Multics B0039% February 13, 1966 i

"Proposal for Stage 1 Simulation of the GE 645 - Multics

System;" G. A. Shippey; February 15, 1966; M & A Report
24/1b

¢

"Simulation of I/0 and Secondary Storage in a Multics File

System Model"; D. C. Zatyko, Bebruary 18, 19663 M & A
Report 25/1b

"A Proposal for Modeling Associative Memory Performance';

J. E. Shemer, February 3, 1966; M & A Report 19/1b

.
)
[

e MASSACHUSETTS

>

INSTITUTE oOF TECHNOLO

.. é(;Y/ngéé

MASSACHUSETTS

INSTITUTE OF TECHNOLOGY

