- . P L . .
T0: B¢, Paley GF flancy TVaNeck | K- Marbyn | S0 Dontew 3. 5abdzer 0 o

FROM: M. Thompson, P. Schicker
DATE: March 14, 1968

SUBJECT: System and Process Errors in Ring O

Background:

Currently the standard way to terminate a bootload run in the event of an
error or unexpected fault is to call or transfer to the segment Panic.

Panic is an impure procedure which brings down one processor by executing

a DIS instruction. Often this is not a useful way to terminate a multi-
process or multi-processor run. The following notes outline a scheme to
handle faults and errors in ring O after system initialization for a multi-
process, multi processor:environment, and suggest a way of using these pieces

to cl%&y up fault and error handling during initializationm.

I General Considerations

A. It is necessary to distinguish 3 different error conditions
l. system crash - brings down all processors
2. process terminate - blocks one process

3. process error - writes message and returns to command had.

B,During system initialization

WA s,
WA R M NG N o St o,

the FIM and the II respectively(§5~soon as posgibTE"m
merwd’}.(c-%"l’
2. It is mandatory that all faults and interrupts be :

1. it is desirable that all faults and interrupts be szjfto

to the FIM and II before leaving ring O.

L ey v o oy

3.

PAGE 2

It is desirable to have interrupt and fault initialization
done in as few steps as possible and done in obvious places

and in obvious ways.

ITI New (or almost new) modules and data required

A. pds$terminate_type

1.

a new switch with two settings - system and process

if set to system means to crgqsh the system in case of error
if set to précess means to crash the process

It is used by terminate proc, (panic)

Could be set and‘reset by fim and/or switch_stacks or maybe
by the gate keeper-to indicate when errors were fatal to -

the system and when only to the process.

B. Revised Panic program -~ (also referred to as terminate_proc)

0.

1.

Faults will not be directed to panic

It will ret;;;-an original entg¢ry like it has now (if
necessary) to be used very early in the process's life before
the first step of fault and ii init

has a new crash_switch; if this is off uses original method
if on uses new method

New method: (note it is now a pure_procedure)

if pds$terminate_type = system

call crash

if pds$terminate_type = process
call block
wori M

(it would be nice to have a hard_core wﬂuﬁout‘procedure at

this point to inform the user that he has just lost out)

. =)
C. Crash y5' qu/*U

1. Stops all processors (including it's own) by sending them
system_trouble interrupts J

puere

2. has two entry points $dead, and $sleep whenfap sleep can
be restarted by an execute fault

3. displays in the processor lights the usual fault information -

i.e. A = fault

D. System trouble interrupt_handler
1. This must be built'into ii since it may not be able to .use

temporary storage.

2. gets the interrupt frame prepared for a restart ' Fﬁgﬁxgi{

DiIs
3. masks against all interrupts and hangs on a & waiting for

>

48 .
an execute fault, or a second sgg_trouble interrupt. < &»Mxﬂ”’

Ll

<
\
‘

E. Ring O signal "fAﬂyﬂf
1. has a fixed list of acceptable condithnxghmes and handlers
umchatmed . 5ipm oL
and one eeownformexl condition handler.
2. The three condition-handlers are
a. terminate proc (panic) e.g. for illegal handler, some

error returns; divide check etc.

b. crash e.g. for MME's .

PAGE &

¢. crawl out - e.g. some error returns (invalid_segﬁo...)
fakes a return out of ring O which the gate keeper
can recognize and cause the FIM to signal the
condition in the new ring rather than retufn.
3, Before signal tries to crawL_out’for any condition
it will check that there is a ring to go to other

than zero, if not it goes to terminate proc.

ITI. Changes to system initialization
A. Bootstrap 2
1. leave interrupts going to bs .1l
2, 1leave faulti going to bs 1

- M\Lv
don't clear SDW for bs 1 <¢—

B. Fault and Interrupt Initialization step 1
after
This is done right e&f in MMCI_init so that we can read the

clock for a timer runout fault or find out about all processors
for a system trouble_interrupt. Thus bs_Zainitializenqx£é§}§
T
RSW,»MMCT_INIT;»Fault_init_one
l. Fault_init
a. initializes fim pointers (per bs 2)
b. directs all faults to fim
c. system fault dispatch goes to interiq_&_segfaulgvfor segfault
and process terminate for bound fault)gate faults)op.code not

defined,rﬁna o 5;?#ha£

d. seb Q(‘ﬁﬁ‘i‘@"ﬂ«’h&{‘a.&tj?ﬁ = S“lﬁ'&CW‘

PAGE 5

2. II_init
a. initialize ii pointers
b. send all interrupts except syg trouble to ignore

entry in ii

3. clear sdw of bs 1

C. II_ init step la_
When turn_on_segment meter is called alarm-clock interrupts

must be nabled.

D. Fault and Interrupt Initialization step 2
This is done after collection 3 is read iné»;initialized

probably just before the call to init_proc

1. Fault_init

r‘bﬁf .
wsmd’ fault_dispatch to go to real handlers

gate
bound fault

op,code,not-definecx

ring 0 signal

2. II init

a. redirect interrupt vector to proper entries in the ii

MULTICS SYSTEM-PROGRAMMERS' MANUAL BU.L.04 PAGE & 6

Identification

crash

Purpose

Crash is called by the FIM (reason unexpected fault) or by panic alias
terminate_proc (because of an unrecoverable situation). Any call to crash

will bring the system to an ordinary stop.

Implementation

\
o
1. inhibit on mask the calendar clock interrupts Qﬁff/,,—/
) _ "
2. set sys_trouble interrupts for all initialized processors a ‘ w‘\/\(:
masks to allow only sys_trouble interrupts
3. redirect execute faults to <crash>/[sleep]§the system is restartable.
4. 1inhibit off
5. wait for 1 %asec to recieve the own sys_trouble interrupt

6. return (unless called at entry <crash>/[sleep] the system is restartable.

\%ﬂvi\dkf’(g8
Restart: : Lﬁc"
asS=== yG

1. inhibit ‘s redirect execute faults to FIM ‘)j“““*

5%& "“.Huupﬁ‘
2. seb syq_troubleafor all initialized processors

3. DIS (will be interrupted by sys trouble interrupt)

MULTICS SYSTEM-PROGRAMMERS' MANUAL BU.1.03 PAGE & 7

Identification

sys_trouble hander

Purpose

In order to bring a Multics System to a complete stop, the module "crash"
will send sys trouble interrupts to all processors associated with the
System. Every processor will then stop on a DIS instruction in the syq;trouble

handler. A further sys_trouble interrupt will restart the processor.

Implementation

ard,
1. The machine conditiomsof the interrupt s stored in the current interrupt

frame in the_processor stack (PRDS). After this point, no other system data
base may be used (there might be none available).

2. A switch is set to distinguish later restart interrupts.

3. The pointers in PRDS (stb_pointer, sreg pointer, scu pointer) are
changed to point into a storage area inside the sys_trouble handler (nobody
cares about this data)

4. The processor stops at a DIS instruction.

5. TUpon restart (determined by examining the switch) the péinters in PRDS
are restored (a copy of the original pointer in <prds> | [sth_pointer}rwas
kept in <prds) | [stb_pointer]+6)

.6. The restart switch is turned off

7. The processor mask is restored : -

8. The machine conditions are restored

)

MULTICS SYSTEM-PROGRAMMERS' MANUAL BU.1.05 . PAGE L %

Identification

signal in ring O

Purpose
Signal in ring O is prelinked at sys init time. There is no signal vector
in ring O but a list of conditions coded into signal. There are three
possible actions:

1. shut down the system

2. terminate the process

3. crawl out of ring O

Implementation

The condition name is compared with a list of condition names.
1. it is a "shut down'" condition — call crash
2. it is a "terminate process' condition — call terminate proc
3. none of the above
a. 1is rtn_stk accessible? mno— call terminate proc
b. is rtn_stk initialized? no = call terminate_proc
c¢. crawl out of ring 0
Crawl out
The ring O stack will be searched until the last ring cross flag is found;

then execute the following sequence:

even
nop %42
rted © sp/20

oct 125307703521

MSPM BUs iU PAGL % ¢
BK.3.
BD. 9 L]

BB.SI

the rtcd instruction causes a wall crossing fault. FIM calls gate$out.

After the usual ring switching procedure gatekeeper will detect the above

mentioned sequence (l. cold instruction for rtcd, 2. is this a return from

ring 0? 3. even instruction is nop, 4. address of nop instruction points
c.mc“”‘\tws

at magic number) and modify the Fim of this special constettation. The FIM

in turn will signal in whatever ring has called something in the hardcore

ring.

Ring O FROLTS pud ERReRS

wJ shom Lt drs putthe :
+ ! v,yf?..’p»&\?\aﬁ\
@ P |
Fim P — pese %.9.51.
3 mk evim A S2 ».(E .
>=¢ heﬁxix T——2 Wadevin . 2. M\W,m.r(? ¢!t Ponte
X e T
s O T T
Ju*as h?z?u /] —> wLA-rﬁm.\e(
S f._ ;(Aﬁ. L Yepuntafa _prvt . * |
— %$ > waﬁp-ms&? PaNtc
sp-esde wot %A..:?%) terminate -
= .w?m‘.f—,s& t. QLo —ov«on
NV n, 3 .
fink SEI L+ op ewda.
h o R ¢
[2
mu«onauu @ ??:J a&i
. ,% e 7
N Sign " &Y L;C‘c i Jerwnaded done tevuiatts Tk
M 4»)@ Q W-‘H»_k Fo z = MJ.LM#C ﬁﬂ \ - ?G\QQ\.
, Z Bloc v
./.E%E&R rFM
m..»....w-._m M.M,M“..Nw.,u foone
[V
Pigst
- T &. \
, cadk evad b slus
2 = J

