Identification

An alternative command language

W.H. Southworth, M.A. Padlipsky

Purpose

In order to offer the Multics user a compact command language with a built-
in "macro" facility, a procedure named egg has been developed. As"the name
suggests, the Egg is closely related to the standard Multics command language
interpreter, the Shell (BX.1.00). The syntax recognized by the Egg is

quite similar to that of the Shell, although it has been chosen to allow

for a somewhat more consistent format and implementation. For users familiar

with CTSS, it should be pointed out that the Egg is not unrelated to the

. familiar "dot" (.) subsystem: a user-orieﬁted interfaceé which provides con-

venience in using the time-sharing system, particularly in regard to the

typing of commands.

Introduction

Being a command language interpreter, the Egg has as its primary role the in-

+ voking of procedures as dictated by character string input. As is usual

in Multics, communication between procedures is performed by means of closed
subroutine callé (cf. BD.7.00). Hence, the Shell is issued a command,
Yegg', causing the procedure of that name to be called; then the Egg is
prepared to-accept commands as specified herein, of the general form (but
not format)

v= f(il, 12, i3,...)
That is, a siﬁgle-valued function of an arbitrary number of input arguments,
all the arguments and the value being character strings. An advantage of

this approach is that the input arguments may be treated as fixed-length

1

character strings, thus facilitating implementation#iji-

The basic format of an Egg command is

commandname argl arg2 arg3 ... B
That is, typing the name of a procedure and its arguments (or causing the Egg
to be called with arguments from another procedure, or through the Shell,
or as an absentee user) causes that procedure to be called (i.e., "the
function is applied") with the specified argﬁment list and the_"value" or
return argument as an implicit last argument. The significance of the value

returned by a command should become clear in the examples below.

Defined syntactic elements in the command language allow the performance of
additional services, beyond the simple invocation of a command: "iteration"
may be caused, with a given subset of command elements being applied repeatedly
.to other elements; an "active function" may be specified, its value being
obtained directly for the rest of the command to operate on; concatenation

of argumenté is performed as desired; and so on. The syntactic elements are
defined below, followed by a discussion of conventions and the presentation

of examples. Finally, we turn to the macro facility mentioned above.

Syntactic Elements

The Egg récognizes the following syntactic elements; essentially, they are
character strings and various special-purpose delimiters (pointed brackets
are used in the Backus Normal Form sense):

characterstring A character string comprises any ASCII characters

except the defined delimitors. The first string

in a command is the command name, subsequent strings

space

(o0}

[...]

o 80 D Talle
. ,s““\i‘
A

(...)

are either arguments or, if appropriately delimited,
constituent commands.

The space is the basic argument delimiter; arguments
must be separated by spaces. The defined delimiters
need not be separated from arguments by spaces,
however; i.e., (arg) is equivalent to (arg).

Braces delimit an active function; the value of the
enclosed function should be obtained and inserted into
the current command line. Active functions are
re-evaluated if the obtained value is other than an
ordinary character string (i.e., if it in turn
contains special-purpose delimiters).

Square brackets delimit a neutral function; the value
of the enclosed fudction should be obtained and
inserted into the current conmand 1ine; but should
not be re-evaluated, even if it contains special-
purpose delimiters. |

Single quotation marks delimit a literal string; the
value of the neclosed string should be inserted

directly into the current command line, regardless

of the presence or absence of special-purpose delimiters.

Parentheses delimit a group of iteration elements,

the iteration elements themselves being separated by
spaces; the command line is evaluated for each elément
of the enélosed group of elements.

The semicolon denotes the end of a command; it causes

-

termination of all function delimiters to the left

o -4

‘ Lol J.w‘a"’:,
.)
\uorhk ‘}. ;’b M’?:f" except literal string, and implicitly begins
éy‘ X ,\,x““div ?}fﬂ&// a new active function. (The new line character has
' oﬁzj* the same effect as a semicolon.)

Afte the Egg has evaluated a command line until no delimiters excépt space
remain, the command is in the basic format shown above and is itself evaluated
(i.e., the named procedure is called, unless thé command is a macro, as

discussed later).

Conventions

The Egg itself deals only with character strings. Thus, all

input and output arguments of called procedures must be converted to/from
character strings for ihterfacing with the Egg. (Argument conversion may be

added subsequently;. see below.)

Arbitrary nesting of syntactic elements is permitted.

A command implicitly begins with a left brace, {, and is terminated by a

semicolon, which is equivalent to a right brace followed by a left brace, }{,

in this context.

Elements of a command which are not separated by spaces are concatenated. E.g.,
print {getname}.text ;

would cause getname to be called (active function), and the value returned

by it to be concatenated with ".text", the result being passed to print

as its argument. Assuming that getname returned the string "srpkg" and that

print, plausibly enough, causes the printing of a file at the console, then

"srpkg.text"” would be printed. (Had there been a space between the } and

the., howeve;, print would have been called with two arguments, "srpkg"

and ".text".) The concatenation may contain more than two components. E.g.,

print {pdir})x>\{getname} ;

\)‘:SNN

> >The Shell escape character, %, may be used.

Examples

1) Suppose procedure b returns "x" as its value; then : JRGRN
print {b} ;
would cause file "x" to be printed, as would
print [b] ;
2) Suppose, however, that procedure b returﬁs "{x}" as its value and that
procedure x returns "y" as its value; then
print {b} ;
would cause file "y" to be printed, whereas
print [b] ;
would cause file"{x}" to be printed, if such a file exists, as would

print '{x}' ;

Examples 1 and 2 point up the difference between active and nguttai functions.
3) As an example of iteration, consider the command
print srpkg(.text .link .symbol) ;

which would cause files "srpkg.text", "srpkg.link", and "srpkg.symbol" to be
printed, by virtue of the concatenation of the iterated elements with‘the
string "srpkg'".
4) A further example of iteration is

| (print delete) (srpkg funcl) ;

which would cause files ''srpkg' and ''funcl" to be printed and then deleted.

"

Macro Facility

The Egg offers both a standavd macro facility and an interface for an optional
user-furnished special interpretation of command lines, which may be a special
macro facility or some other procedure such as an argument abbreviation
interpreter. If the user wishes to have his own procedure called before
~ (or instead of) the invocation of a command, he issues the following command:
egg$set_interpreter procedurename;

This command causes the Egg to call procedurename when the current command

has been reduced to basic format. The calling sequence is
call procedurename (commandname, valuestring, errcode,
- argoount, argl, arg2, arg3, ...);

with declarations

,,‘ﬁdcl (commandname, argl, arg2, arg3, ...)
s char (*),

valuestring char (%) varying,

" (errcode, argcount) fixéd bin (17);
In essence, then, the user procedure is called with the curreﬁt command line -
being made available to it; for convenience, a count of the number of argu-
ments is also furnished. The errcode argument is to be set by the user procedure
as follows: if errcode is set to 0, the Egg is to consider the command
to have been evaluated and proceed with its post-evaluation processing;
~ if errcode is non-zero, the Egg continues its processing by evaluating the
command. Note that”only errcode and valuestring may be written into by the
user procedure; errcode must be set, but valuestring is null to begin with
and if no value is intended to be returned it may be left alone. A non-
standard macro processor would set errcode non-zero if commandname is not
found to be a macro, thus allowing the Egg to‘call the command as a Multics

procedure; an argument abbreviation interpreter, however, would have to set

errcode to zero, because it is not permitted to write into the (fixed-length)

argument strings and must invoke the command itself.

The standard macro facility is accomplished by the insertion of an additional
step in the logic of the Egg before the command in question is actually called:
A "table of contents" is checked, to determine whether or not the command name
is in reality a macro name. If it is not, the name is that of a standard
Multics procedure, which is called in the usu&l fashion. If, however, the
current command name is a macro name, the table of contents indicates a

string which is to be evaluated in turn as a command, instead of directly
calling a procedure of the given name. The evaluation of the macro string
also permits the possibility of arguments to the macro, by scanning for
special markers in the string and substituting arguments from the current
command line as appropriate. The following commands exist, then, to establish
macro definitions, to allow for macro arguments to be specified, aﬁd to

cause the removal of macro definitions.

To establish a macro definition, the command employed is def, which takes
as arguments the macro name and a literal string defining the macro. A
simple example would be
def a '{list **}' ;
which would result in the definition of the "command" a as the performance
of the list command.for all files. A rather more elaborate example is
def . '{{read string}} {.}' ;
which, assuming that read string is a brocedure which reads a character string
from the use;;input stream, would have the following effect: read_string is
called (active function); the string read is processed as a command (active

function again); when that string has been processed, the (macro) command "."

is called, and ... the process is repeated. The upshot of it all is that
wait and ready messages are suppressed, just as they would be in the Egg's
ancestor the CTSS '"dot" command, because command level is never again reached

until explicit action to do so is taken. Note that macro definitiomns for

the same name may be "pushed down". To establish arguments within a defined RES oot

macro, the command employed is arg, which takes as arguments the macro's
name and whatever strings are to be specified as arguments. Suppose a macro
named "p" had been established by
| def p '{list x y x}' ;

then the effect of the following sequence

arg p x y ;

p ab ac ;
would be the execution of the command

list ab ac ab ;

To display the current set of defined macros, the command emp}oyed is dis.
Finally, to remove a macro definition, the command employed is rem, which takes
the macro's name as argument. E.g.,

rem a ;

would remove the macro definition associated with a.

Implementation

The implementation of the Egg is based upon the TRAC algorithm, as described in

the Communications of the ACM, (Mooers, C., "TRAC, A Procedure-Describing

Language for the Readtive Typewriter, Vol. 9, No.3, March, 1966).

*

