~
\ oo
P G S

ui/s/é &

MULTICS SYSTEM-PROGRAMMERS' MANUAL DRAFT

< -

(T;;% \\0(‘

ldentification

Supervisor Performance Measurement for Initial Multics
J. Gintell

Purpose

- The Supervisor Performance Measurement facility described herein enables
the gathering of system-wide information about supervisor performance in a
multiple process environment. |t is implemented by meéﬁs of a modified
Fault Interceptor Module (FIM), an alarm clock handler to process alarm
clock interrupts used to "sample" procedure usage, a set of metéring
procedures, and a system-wide data base containing gathered data. One

of the major design objectives of the Supervisor Performance Measurement

facility is to minimize its effect upon system performance.

Summary of Information Recorded

1. Time distributions (histograms) of times spent processing page, segment,
linkage, and wall crossing faults.

2. Count of procedure segment usage (i.e., number of alarm clock interrupts)

for each segment whose segment number is the same for all processes.
3. Count of number of page and segment faults received for each segment

g

shoe segment number is the same for all processes.
A pre-selected combination of page, segment, linkage, and wall crossing
faults (or no faults) can be considered for metering. The time recorded

for processing a fault will be adjdsted to discount the time attributable

to any subsequent faults. temporarily disrupting its processing.

MSPM DRAFT PAGE 2

The per-segment information (items 2. and 3.) can be recorded 'during -the
processing of a pre-selected combination of page, segment, linkage, and wall

crossing faults or during the time when no faults are being processed.

Metering can be done during initialization only, after initialization

only, or both. It can also be stopped and restarted.

Discussion

Nested and Recursive Faults

This metering facility must handle selective metering by fault type, and
must accomodate the situation where processing of one fault can be suspended
while another fault is processed. Defined here is a notion of "states" of
a process and a stack in which to maintain information regarding faults
which have not had their associated processing and meéering completed.

These concepts must be implemented if time digfributions for nested and

recursive faults are to be recorded.

Nested and recursive faults will be handled as follows. When a fault which

is to be me£ered occurs, the previous fault metering is arrested. When
processing of the new fault completes, the metering of the previous fault is
continued. This type of metering discipline allows the total time for all
fault processing to equal to the sum of the times for each fault and treats
recursive faults as if they were independent. Conversely, since metering

can be inhibited, it is possible to include the processing time of a relatively
"inferior" fault (e.g., a page fault) with the processing time of a relatively
"superior" fault (e.g., a segment fault) simply by choosing to meter the

superior fault and to not meter the inferior fault.

MSPM DRAFT PAGE 3
The state of a process

Any running process can be considered to be in one of five states:
R1. Processing a page. fault
R2. Processing a segment fault
R3. Processing a linkage fault
Rik. Processing a wall crossing fault
R5. None of the above
At any given time a processor is being used by some running process which

is in one of the 5 states, hence the processor can be considered to be in

one of the five states (R1, R2, R3, R4, R5). '

A processor switches from one of its five states to another (or back to the
same) when one of the four faults occurs, when the dbr is swapped or when
the control unit is restored by the FIM.upon the completion of processing of
one of the four faults. Each process will maintainits current state in a
per-process stack by updating a "state word" whenever the process explicitly
changes state as by receiving a fault of the above type or by completing

processing of such a fault.

At each instance of possible action by the metering procedures, the current
state is determined by comparing the per-process state word for the currently
running process with the appropriate entry of the system meter data base to

determine whether the action is to be taken.
Fault Time Distributions

A distribution of times for each type of fault processing is maintained.

For each fault type an érray of processing integrators is maintained, where

MSPM DRAFT PAGE 4

each entry contains the number of faults and the total elapsed time for all
faults whose processing time falls into the range associated with the given
entry. At the time that the processing of a fault is completed, its time

value is used to determine which entry to use.
The Fault Meter Stack

Because it is desired to know the value of the processing time for the
complete processing of a fault before recording it and because a fault's
processing can be interrupted prior to its completion, it is necessary to
maintain a stack of elapsed times and fault types for all those faults

whose processing is not completed. Each process has such a stack of
incompletely processed faults. The stack must be wired down since it can

be referenced during page fault processing. Since a limited amount of space}
1s available and overflow is possible, the stack maintainence code has to

be prepared for such overflow. In the event of overflow the metering will
continue to operate, even though the results are meaningless, so that the
amount of space that would be needed to avoid stack overilow can be recorded

and used to prevent subsequent stack ovdrflows.
The "Process Clock™"

Durations will be measured by computing the difference between successive
readings of the "process clock". The process clock is a conceptual clock
which counts off time only while a process is running. |t ig implemented
and kept current by using process metering informétion maintained by the
traffic controller and current timer register readings:

Process clock time = trs-t + te

MSPM DRAFT PAGE 5

where trs = value which was last loaded in the timer register

t

current reading of timer register

te

1

elapsed time spent by process since it was created.

To simplify the computation of elapsed time the notion of "pseudo-start-time"
for the processing of each fault is used. Pseudo-start-time is that value}

which would have been read from the "process clock" had the processing of the
current fault not been disrupted. |t is computed each time the processing of
a fault is resumed by subtracting from the process clock reading the elapsed

process time used so far by the disrupted fault.
Method of metering for alarm clock interrupts

The alarm clock is set to interrupt after a certain interval. When the
interrupt occurs, if the current process is in a state for which segment
usage counting is to occur and the segment number is within the range of
segment numbers which are the same for all processes, a count for the
interrupted segment will be incremented.

Method of metering for fault metering

IT the fault is the type to be metered, any current metering is suspended

and a new meter for the new state is started.

When the handler for a métered fault returns contrd, the elapsed time is

computed and accumulated in the system data basis.

MSPM DRAFT ' PAGE 6

Implementation

Introduction

Supervisor Performance Measurement is accomplished by two modules and a
data base containing all metering results. The modules are the alam
clock handler <alarm_> which is used to initialize the alarm clock and to

process alarm clock interrdpts and the metering segment <system_meter> which

does all fault metering. The data base is the System Metering Table (<smt>).

Segments <alarm_> and <smt> must be wired-down segments included in the
desriptor segment template and accessible in every ring so that the alarm
clock interrupt can be handles rapidly and at any time. <alarm_) must be
mastermode. <system_meter> must be cal lable from both rings O and 1 because
it is called .for both page and linkage faults and it must be wired dowﬁ

because it is called during page fault processing.
Entries and Calling sequences

1) call system_meter$init; ,

cailed by initializer
2) call system_meter$multics;

called by initializer just prior to calling Multics
3) call system meter$page_fault;

called by fim upon detection of page fault Q;"}

4) call ;ystem_meter%segment_fault; i&ﬁw ¢62{” <J J”pl

called by fim upon detection of segment fault
5) call systemJneter$linkage_Fault;

called by fim upon detection of linkage fault

v/»r/

e

MSPM DRAFT _ | PAGE 7

6) call
7) call
8) call
9) call
10) call
11) call
Descript
1. Acti

A,

b.

Ce.

d.

Se

f.

g.

h.

system_meterdwall_in;
called by fim upon detection of inward wall crossing fault
system_meterfwall_out;
called by fim upon detection of outward wall crossing fault
system_meterfstop (error);
del error fixed(35);/% # 0 if did not stop*/
called by intrp_stat prior to using data base
éystem_meter%start(error); ' L4AQML%JK 2
dcl error fixed (35); /*#0 it couldn't start®/
system_meter$unlock;
called by intrp_stat at end of interpretation to unlock metering
alarm$set;

called by system_meter$init to start the alarm clocks interrupting
ion of Metering Procedures

on taken when a fault occurs

go to step h. if this fault type is not to be timed

reaa the "process clock™

using "process clock" reading and pseudo_stafl;time found in.current'
stack frame, store the elapsed time for processing thus far in the
current stack.

allocate a new frame, updating pointer to current Fraﬁe, fmeter _ptr
store a pointer to the previous frame in the‘new frame

store the current state in the new frame

store the "process clock" reading in the new frame

continue

MSPM DRAFT ‘ PAGE &

2. Action to be taken when fault processing'is_completed

A.

b.

Q

go to step h if this fault is not to be timed

read the "process clock"

using the pseudo_start_timé found in the current frame, compute
the elapsed time used for this state. (elapsed time = "pro;ess
clock" - "pseudo_start_time").

record this time in that entry of the array of time distribution
for this fault which is to be used for time of the computed value.
The recording is done by incrementing the total time by the just
computed time, and the fault count by 1.

pop the stack by setting the current frame pointer fmeter_ptr

to theiprevious frame using the currént frame to obtain the value.
free the "popped" frame

compute the "pseudo_start_time" and store in the current frame
("pseudo_start_time" = "process clock" - elapsed time)

continue

3. Special-Action upon page or segment fault only

2.

go to step d if per_segment page or segment faults are not to be
counted for this state

access segment number for this fault

increment the page or segment fault count in the entry for this
segment in the per_segment fault_count array

continue

MSPM DRAFT PAGE 9

L. Action taken upon alarm clock interrupt

a.

b.

increment clock_count, read and record time, and set clock
dtermine whether segment usage counting is to be done for the
current process stéte and return if the state is one for which no
counting is to be done

if segment number is out of range update out_of_range count and
return

increment segment count entry

return

5. Special entries in metering module

a.

init:

1) initialize the meter stack space

2) interpret switches to set sta}e switches

3) call <alarm>| [set] to set alarm clock

L) start metering if so indicated

5) return

start:

1) set error if data base is locked and returm; else
2) initialize all meter_data tables

3) start metering

4) return

stop:

1) set error if unable to lock and return, else
2) stop all metering

3) lock metering_

4) return

VSPM DRAFT PAGE 10

d. unlock:
1) unlock metering

2) return
System Metering Data Base

The System Metering Data Base contains switches showing the global
characteristics of the metering run and some times indicating when the

run started and stopped.

There are four arrays containing statistics for page, segment, wall crossing

th 0f which

and linkage faults where each.array ontains 25 entries, the n
- +

contains the number of associated faults which required between 25 and

2n+6 microseconds to process and the total processor time for all such

fault processings.

The System Metering Data Base also contains an array whose nth entry
indicates the number of times segment number n was being executed when
the alarm clock was interrupted and another army, whose nth'entry indicates

the number of segment and page faults taken for the nth segment.

Two locks associated with the data base are in <s t>. The first lock is

a local lock to be used when particular entries are being updated while
metering is operating. It is used to avoid multiprocessor race conditions
and need not be used when add-to-storage instructions are used. The
second lock is global and‘indicates that the state words and meter control
information cannot be changed. This will be set during metering and also

——)

during the processing of the data base by intrp_stat (B_.__.

MSPM DRAFT PAGE 11

Space for the perprocess stacks and a pointer to a list of free stack

frames as stored in <smt>.

Specification for the System Metering Data Base <smt>

Name % Contents

segent states during which segment usage counting

should be done
bit O

1

1 if should count during none
of PF,SF,LF,WCF

1 =1 if should count during page
fault processing

2 =1 if should count during seg-
ment fault processing

3 =1 if should count during 1ink-
age fault processing

4 =1 if should count during wall
crossing fault processor

psfent states during which per_segment page or
segment faults should be counted

bits 0-4 as in segent

segent_init initial value for segent
psfent_init initial value for psfcﬁ%
metflt faults which should be timed
bit 1 =1 if should time page faults
2 =1 if should time segment
fault
3 =1 if should time linkage
faults
4L =1 if dould time wall

crossing fault

MSPM DRAFT

PAGE 12

Name

Contents

metfli_init

initial value for metflt

meter_init

bit 35 = 1 if should start performance

analysis during initialization

meter_multics

bit 35 =1 if should start (or continue)

metering after <multice> is called

4

lock unstable values lock
=0 if stable
stable = 0 if valid to change state of metering

will # 0 if metering is running or if

interpretation of table is occurring

begin_time
multics_time
latest_time

time_interval

clock time at which initialization started
time at which <multics> was called
time at which last interrupt occurred

time interval in microseconds for alarm

clock

clock_count

total number of clock interrupts

clock_meter

number of clock interrupts for which

metering was done

out_of_range

number of segment meter attempts for which

segment number is out of range of table

seg_high

segment number of highest segment which is

the same for all processes (in bits 0-17)

MSPM DRAFT

PAGE 13

Name

Contents

multics_table

nth entry contains number of times segment
n was being executed when alarm clock

interirupt occurs

perseg_psflt

nth entry contains in bits 0-17 number of

sey faults, 18-35 number of page faults

for the segment whose number is n.

p_stat array of pairs whose nth entry contains data
for page faults taking between 2" and
nt6 .
2 microseconds to process
word 1 contai ns count
word 2 contains total time for faults in
the time range
s_stat array for segment faults as above
1_stat array for linkage faults as above
w_stat array for wall crossing faults as above
stack space in which meter stack frames are allocated

stack_size

size of total stack area in bits 0=17"

stack_free

relative ptr (in bits 0-17) to beginning of

free stack frame list

stovfl

i'unning count of number of stack frames

by which stack area has overflowed

stovfl_max

maximum value for stovfl during metering

MSPM DRAFT PAGE 14
Per Process Data

1. Per Process Fault Meter Stack
Each process has a stack of fault meters. In the top entry is the
meter for the current state and in all other frames are the meters for
the temporarily stopped states. The stacks are all contained within
the system-wide data base. All unused frames are kept as aklist of
free frames. The top of a given process' stack is identified by a
pointer in per/process address space, the PDB. The bottom frame
represents the state of not processing page, segment, linkage, or wall

crossing faults.

Each frame has two words:

word 1 bits 0-17 - process state

bit 0 = 1 not in PF,SE,LF,WCF
1 =1 processing page fault
2 = 1 processing segment fault
3 =1 processing linkage fault

4 =1 processing wall crossing fault

bits 18-35 - rel ptr to previous frame

=0 if end of frame.,
word 2 for top frame - pseudo_start_time of this state

for all other - amount of time spent thus far for this

state frames
For the list of free frames, the relative pointer is used to point to the

next free entry. A relative pointer whose value is O marks the last entry

in the list.

MSPM DRAFT PAGE 15

2. Pointer to the fault meter stack
In the process data block of <pds> of each process is a relative ptr.

to he fault meter stack.

del fmeter_ptr fixed bin(18);

