S a

April 10, 1969

THOUGHTS ABOUT RESEARCH TOWARDS MULTICS-2

Michael J. Spier and Elliot I, Organick

THOUGHTS ABOUT RESEARCH TOWARDS MULTICS-2 PAGE 1

One of the attractive poﬁentia1évunique to. Multics s

the opportunity to design subsystems consisting of

cooperating processes, some of which are non-sequential in

nature. A Multics process that would Tive in its Wait
Coordinator and respond to series ‘of external events by
performing computations peculiar to each event, would be. an
example of a non-sequential procéss. Processés that perform
answering éervice, agent or broker functions, are examples
of non-sequential processes. It is believed that the deéign
of subsystems with large numbers of intercommunicating
processes wdu]d be greatly simplified if a programmer ‘wére
provided a chance to create and fully utilize non-sequential
processes of géneral (unrestricted) capability.
Uﬁfortunately, “with the present system design such
‘non-sequential processes that <can be created must be
artificialfy. restricted to insure satisfactory response
characteristics., Such restrictions severly weaken the
potential value of these processes.

Consider a non-sequential Multics process that s

designed to service event calls over a set of distinct and
functionally independent event call channels, Uh]ess special
precaﬁtions are taken, service to one event call adversely
affects service for another. This condition arfses when
service for two different event éal]s is initiated but
must in each case be temporarily sugpended awaiting receipt
of a nqeded messace béfofe being allowed ;o complete the

intended task. When the second service 1is delayed it s

THOUGHTS ABOUT RESEARCH TOWARDS MULTICS-2 . A PAGE 2

impossible to resume work on the first even though said
message has-(by now).arrived._ Effectively, thc'decision‘ to
wait for receipt of one message (the second event wait)
masks the arrival 6f messages previously waited for, Since
the "blockg" are stacked, wakeups can be achieved 'only in
LIFO order. The result 1is that event ca}l tasks, once
begun, cannot enjéy the luxury of'calliﬁg ipc$block withoﬁt
risking (indefinite) delays, i.e.,‘delays that may extgnd
well beyond the time at which the waited-for message has
been recéived.

The Qndesirab]e characteristfcs we have just described
are .intrinsic to Multics processes as we. now know them

o g e oddeer cprc

because there is essentially only one —stack- per _process.
Each successive invokation (activation) of the Wait
Coordinator is associated with a new stack‘ frame. It s
impossible to recognize arrival of events on thé wait-lists
of previous activations of the Wait Cobrdinator as long as
the stack frame for that activation ié buried below the top
of the stack. Abnormal returns to recognize the desired
events are out of the question because such a practice would
destroy the history’ of service that has begun for
subsequent (and functicnally independent) event calls.,

There appear to be but three ways out of this bind:

(a) Learn to be very clever and program event call driven
computations without incurring (explicitle nor
implicitély) any calls fo'ipchchk, This approach s

impractical in the meneral case (it requires the

THOUGHTS ABOUT RESEARCH TOWARDS MULTICS-2 PAGE 3

(b)

reprogramming of any system-facility which may call

ipc$block, e.g., the 1/0 system) and certainly requires

first-rate programming skill even in benien cases. This

approach was used in programming the present answering

‘service.

Let service to each of the '"conflicting'" event calls be

disjointed by creating separate processes =--one to

serve each individual event <call channel (in other

words, replace a single multiple-task non-sequential

process by as many dedicated éequehtia] processes as

(c)

there are tasks.,) This approach is féasible, but
suggests the proliferation of processes, each with a
separate but essentially identical address space, each
employing a separate and sizeéb]e secondary-storage és
well as 4wired-down primary-storage coﬁmitment. !n
effect, their address-space Would essentially diffar
only in the.stack. Nearly all other aspects of those

dedicated sequential processes might be identical,

Alter the Multics design of a . process in some
fundamental way so as to achieve a cake-and-eat-it-too
effect. But, any fundamental design change <-=-such as

might be motivated here-- should -be viewed as a

research effort which, if successful, would contribute

to constructive anproaches for new long-range Multics

developement,

1]

L//,

THOUGHTS ABOUT RESEARCH TOWARDS MULTICS-2 . PAGE &

A chief purpose of this memorandum is to skefch one
such research approach. However, before developing this
sketch, we shall digress to examine some implications
concerning Multics research in general. It can be argued

that research is always timely. In particuiar, with (what we

shall call) Multics=1 nearing completion, it appears

especially timely to consider types of research that "might

guide eventual efforts towards significant departures, i.e.,

MU]tiCS"Z. c— —_\/\/\e e lv—Y/‘“‘; \/C\/L‘«L"*’l\u""l) wr(@U’hlu'h“‘\«..

Ways to Think Abhout Multics=2

A first question to ask is: "Must the Multics ‘'series'

be upward compatible?'" Our thoughts'are these:

Multics-1, being a research effort, need not .be completely
upward compatib]é with all future Multics', but should be
useful as,

(a) a concept and experience resource, and as

(b) an instrument (tool) on which to build or test not only

minor revisions, but significant new departures,

Moreover, many 6ff its major modules, e.g., Basic File
System, Linker,v 1/0 Control etc., are likely to be
incorporated, i.e., reusable in any revised context, For

example, the Hardcore-ring of Multics=-1 effectively creates

a virtual machine on which one ébu]d, in principle, build.

new types of subsysterm capabilities,

A second question to ask is what if any obvioué'

methodology sugsests itself for the pursuit of a Multics=-2.

THOUGHTS ABOUT RESEARCH TOWARDS MULTICS-2 | PAGE 5

We propose here one such approach., It consists of three

steps:

1. Define a set of added capabilities that are deemed
desirable and which are compatiﬁle with current system
objectives.. (An example would be toéxisting 'processes
thatyschehow "live" in the same '"universal" address.
space, i.e., share an entireAdescriptor segment rather
than individual segments.)

2.'Identify‘those original design principles (circa 1965,

. 1966) that have been de-facto altered during the

impleméntation period (1967-1969), Infer a modified set

of design principles as appropriate (e.g., modified

concepts re: distributed supervisor, ring-protection
mechanism.) . ’

3, Attempt to draft a Multic§-2 that achieves the
capabilities defined in (1) and that is consistent with

the modified set bf design principles derived in (2).

THOUGHTS ABOUT RESEARCH‘TONARDS MULTICS-2) PAG

AN EXAMPLE APPLICATICN OF THE METHODOLOGY

We now propose to illustrate how this methodology mi
be followed to produce a new '"process'" concept that
offer the cake-and-eat-it-too advantages we spoke of in

introductory part of this memo.

1. Proposed Objective (added cépability)

Any Multics-2 process is to be capable of becoming

e

e .
root, of a tree of proccsses.AEach subsidiary process in

tree is created and eventually destroyed by its parent.
process' priority in the race for a processor is determi

by its relative location within the tree -'structure, w

priority inversely proportional to the location's dedlpoth.

higher priority process' need for a processor 1is always whﬂ "

satisfied at the expense (pre-emption) of a lower-prior
running process,

Each process in the tree is defined as being

potential execution point (pseudo-processor) associated with me

a set of process state characteristics (pseudo-SCU da
that can be '"restored'" to get the process to run once mo
The state of a process is defined from an (expand
APT-1ike table entry. These entries are tree-linked

mirror the hierarchical relation among co-exist
processes., Execution briority is determired by the t

level of the process,

E 6

cht
may

the

A
ned
ith

N
ity s

a

ta)
re.
ed)

to
ing

ree

THOUGHTS ABOUT RESEARCH TOWARDS MULTICS-2 ' ' PAGE 7

The APT entry includes:
(a) a list of received event messages (currently known as
the ITT queue.)

(b) process state variables (analogous to processor machine

conditions) including certain items now kept in the
process' data blocks, all the items that are currently

kept in the APT entry, a pointer to the process'

aAdAvess
"Jocal" memery space (stack) and a pointer to the
' | addvesr , . '
process ''universal momoty space (descrintor segment,)

To clarify the above, let us remark. that we. consider the
stack to be part of the process' state. The stack should be
regarded és being a collection of sbftware—implemented
registers. It has been observed that one never refers
symbolically to one's stack in terms of <$tack>l[offse£], in

fact, when programming a hizcher-level language one |is

completely unaware of the existence of a segment named

"stack'", and even had one wanted to refer to it symbolically
if would have been impossihble because the stack has no
linkage section and no associated 1linkage-pointer and
consequently the expression ‘<stack>| [bffsei] cannot Dbe
evaluated., Just as it is ?ngiiiije to implement a paging

mechanism in a paged environment, so is it impossihle to

refer symbolically to one's stack because the very same

stack is necessary for the ~ implementation of the

qg/g(l’ﬂ ()
symbolically-addressable memory space. Evidently, the stack

must be referenced indirectly through a dedicated hardware

recgister. In the current Multics, due to the fact that

| ; -
v i)&)'&

THOUGHTS ABOUT RESEARCH TOWARDS MULTICS-2 ‘ PAGE 8

GE-6L5 registers talk in terms of segment numbefs, it was
necessary to incorporate the stack segment into’the general
file system framework. One may, Howéver, conceive of a
system in which the stack pointer s an absolute-address
register (similiar to the DBR), In such a system, the étaék
would be outside of‘the scope .of the descriotof segment,
lToosing none of its paging cababiiities yet al]owfng mote
than one processor to execute in parallel on separate
("local address space) stacks using a shared ("universal
address space'") descriptor segment,

1f one wants to program a nonFéequehtial, multi-purpose
process in this environmenf,.one pictures the process, say
A, spawning new daughter processes, 6ne per ’purbose" each
sharing the same address space with A, Each daughter is
responsive to a different class (type) of events, The
parent spawns a deaughter process by executing a primitive,
which somehow has the effect of establishing the desired new
APT entry in association with the paréntfs current DBR
value, i.e,, effectively defining a new. execution point

within the same universal address space,.

2, Modified Desian Principles in Multics-1

Actué],implementation has resulted in a series of
de-facto compromises of the distributed suparvisor concaept,
These compromises have arisen from a need to avoid
interference, Major parts of each of the foflowing modules
now operate locked fo one process(or) at a time, aﬁd for

this reason it may be that they can be recar-ded as if they

‘fd\"‘l \ot\‘-‘—‘(- (e

-

THOUGHTS ABOUT RESEARCH TOWARDS MULTICS-2 - PAGE 9

were separéte, dedicated préceéses (though not "Multics
processes"):. | | |

(a) page control

(b) segment cont%ol

(c) directory control

(d) traffic control

Conjecture: ldeally, we would like to see _thoSe . functions

wholly or partially performed by the hak&ware (in fact, we
may currently have enough understanding.of Paging to try and -+
envision a hardware-implemented paging mechanism,)
Therefore, it may seem appropriate to " regard the present
implementation of those functions as sofx@areesimulated
"hardware'", and to talk about the Basic File System and

about the Traffic Controller as if. they were a pair of
"black boxes" providing us with a virtual 2-dimensional

address-space and virtual processors, respectively.

3. A Proposed Mu]t}cs-lf

Consistent with the above conjecture, subpose we
picture that File System, Linker and Traffic Controller/IPC
can be regarded as a collection qf independent, dedicated
and privileged modulés whiéh can be executed.as independent
Multics-1 brocesses (in other words, let us regard Multics-1
as being our basic machine, aﬁd attempt to. §L§£L odr
research effort from there.) VWe picture that these dédicated
procésses wguld be invoked by faults or other breaks in the
execution of a Multics-2 process. A Mu]ticéf% (henceforth

c . . .)
alled user-) process may create a daughter process by first

. THOUGHTS ABOUT RESEARCH TOWARDS MULTICS-2 ~ PAGE 10

requesting the establishment of'an address space (DBR) by
‘the File System "black box", then requesting from the

Traffic Controller "black box"

the creation of a new
execution-point associated with that adaress space. As
process creation happens in two stages, it is possib]e for
the parent process to specify to thé Traffic Controller, as
barameter, its own DBR=value, in which case the new dadghter
process beécomes in fact an additional execution point in the
barent's universal memory space. A daughter may thus bé
created in the "image of its parent" (i.e., made to share
the same universal address space . with its parent) or be
giyén a new _address space (that fs subsidiary in éome
delegated sense to that of its parent,) | In any Acése,
address spaces for user-processes no 1qnger include (the
equivalent of current) hardcore procedures, Furthermore, as

we are no longer aware of the actual hardware; our processes

are no longer directly associated with the notion of

wired-down storage; also, they no longer call upon any
. B

supervisory procedures, as it becomes evident that all
‘ D

control functions (which' are currently handled by the
supervisor's non-hardcore rings) will be manared by the
parent process, and therefore be completely out of the
user-process' scope.

In fact, in view of the ahove, we may now re-define the
meaning of the ring protecticon mechanism and say that a ring

corresponds to a level in our APT tree structurc. This

allows us to better wndarstand the pérent/daughter

THOUGHTS ABOUT RESEARCH TOWARDS MULTICS-2 : _ PAGE 11

vrelatronShip as we may now clearly see that a dauéhter';
address space is indeed é subset of the parent's address
space, and that the parent has unrestrictéd access to the
daughter's address space whereas the daughter ma& only have
as much access in the parent's aHdréss space as the parenf
may deem necessary. |

All event signalling/reception is_ hénd]ed,-by the
Traffic Controller "black box" whiﬁh acté as a broker. A
process is safd to be.in the '"ready" state if the event
queue associated with its APT entry contains at. least one
- event message (upon waking- up; hoWever, processes manage
the{f events in the normal (current) manner.) Processes are
chosen for running according to their tree-level priority.
Within any tree-level, priority is awarded according to the

dise: plane

classical (multi-level) scheduling algerithnm,

Ve can see now that whereas in Multics-1 a
non-sequentiallprocess can at best employ a ;ingle processor

at a time, a Multics-2 process permits 1in addition to

non-sequentialism real multi-processor parallelism.

