VB R A

; .
! - 3
& T A B A i AT B TG SR T B s s e L e e B pi’ 5~ A P DR

Charles Garman | S A 3 e_er{

S " PAGE 1

Identification

. Some Thoughts on Character Handling with EPL Procedures.

Introduction

In the course of preparing some sample EPL programs and working with the
implementation specifications for the edit command (BX.9.01), a need arose
for a method of describing particular non-graphic ASCII characters, as well
as procedures for performing certain operations implicit in the definition
of the relative horizontal-and vertical-tab characters for canonical-form
character strings.

This document describes two procedures which should be made available and
an extendible proposal for symbolic reference of ASCII character-codes by

name.

Procedures for Handling RHT and RVT

Below are specifications for two procedures, get:rel-count and put-rel-count,
which extract and create, respectively, the binary count character which follows
rht and rvt.
get-rel-count: This procedure obtains the (binary) rélative count from the
character which follows rht or rvt in a canonté¢al form string. It is a procedure
which returns as its value the binary number contained in the single ASCII
character which was supplied as an argument. It may be,prograunmd in three
different ways:

1. assembly-language

2, wuse of the UNSPEC pseudo-variable

3. mismatching declarations across a CALL (char (1) « bit (9)).

Since all options are implementation dependent, the procedure must obtain the

necessary approval; once approved, any procedure should be able to use it

) [| A

= 8 o) . e - — . . Sy

i e

{
|

without further approval.

LS

PAGE 2

put_rel-count: This prdcedure is the inverse of get. rel count; it takes a

binary number as its argument and returns as its value a single character

for concatenatiéon after the rht or rvt;® the same three implementation

options hold as for get-rel-count.

Since the dope and specifiers for characters and bit strings are identical,

this author recommends option (3) for implementation (see appendixes 1 and 2),

Non-graphic ASCII Characters

Although the data character set for EPL is full 7-bit ASCII, at this

writing character-string
language character:set.

later versions of EPL or
problem presents itself,
to work with nonsgraphic

(ASCII 014), if embedded

literals may contain only the characters in the
Presuming that this problem will disappear with

the appearance of full-scale PL/I, a more fundamental
concerning the appearance of programs which need
characters. For example, the form-feed character

in a literal, would present certain confusing

aspects to a person reading a program, creating as it does, a jarring gap

in the printout of the program, or else appearing in fts escape prepresentation.

A more extreme . case is that the backspace character is barred from a single

character literal by the particular definition of canonical-form.

To remove fhese problems, the author proposes that all non-graphic characters

be referred to in programs symbolically, and that a single data segment

(and its associated linkage section) be available to serve as a system-wide

source of these particular characters.

e e A R s e N R R o, S 2 N A L B B R b 8 AT I S AR S S T DR I e e b e

4 o ey €T LR

« L

.

» ,dcl ctl-char§.chatacter: name ext char (1);

».___,_., e - - e B . ' B PAGE 3

~

For each such character which a program needed, the following declaration /

would appear:

where character name is the ASCII (or Multics) name of the character; the

list of available characters should include at least the féllowing items:

name definition
nl new line .
rht horizontal \Lgu;ufé”uﬁ)
' relative 5: - tab 1
rvt ' vertical WL
ff form- feed
bs backspace
rrs red-
ribbon-shift
brs black-
hlf half line feed {forward
hlr reverse

The set should probably include all the characters in the first two columns

(rows) of the ASCII table, plus del (177).

A similar arrangement could be made for the non-alphanumeric graphics, as
well as the upper-case alphabetic graph#cs, at least until these all become'

available in some version of the EPL-PL/I translators.

The means for building this segment is not precisely clear; it may be possible
to define thectcharacters by means of bit-string mis-match declarations in
some initialization program, or more likely by hand tailoring the data-

) -se§ment)
and ilnkaggAa ter an initial cut by the assembler.

SRR RTPTRETNS o JWEEEENENIIE pomis SUSE OSSR S

T

e

ATl

“pashuca nea

FURMS TINCORPORATED

“ess

FOvAL T il

N4y T

S SCEERS

nashua

“INCORPORATED

FORMS

ROVAL F Boo i

Appendix 1

|
i
The programs below show one method of implementing !
get_rel_count and put_rel_count by means of the - ‘ :i
~ UHBBEE pseudo-variable. o R
UNSPE. |

return (I);

e o ey e e e

————— " " TUunspec (temp) = fixed_in;

I“““““'Eﬁﬁi7§ﬁﬂ? ——————————————————————— T
| end put_rel_count;
- - — ; v

Appendfx 2
The programs below are the programs of Appendix 1 rewritten
to remove the UNSPEC pseudo-variables, using instead
mis-matched declarations across the CALL.

get_rel_count: proc(in_char) fixed;

~del in_char bit(9),
i fixed;

i = in_char;
~return (i);

end get_rel_count;

put_rel_count: proc(in_num) bit(9);

dcl in_num fixed binary(17),
temp bit(9);

temp = in_num;
return (temp);

end put_rel_count;

- U . Eatal

