S. GORN, Editor

Code Extension in ASCII* (An ASA Tutorial)

. Editor’s Note

The following working document was produced by a Subcommittee of the American Standards Association Sec-

. tional Committee X3, Compulers and Information Processing, in ils efforts to develop a proposed American
Standard. In order that the final version of the proposed American Standard reflect the largest public consensus, X3
has guthorized publication of this document to elicit comment, criticism and general public reaction with the un-
derstanding that such working document i3 an intermediate result in the standardization process and is subject to
change, modification or withdrawal in part or in whole. Comments should be addressed to the X3 Secretary, Business
Equipment Manufacturers Association, 235 East 42 Street, New York, N. Y. 10017.—E. Lohse, CACM Assistant

Editor for Information Interchange.

The American Standard Code for Information Interchange
(ASCII) contains @ number of control characters associated with
the principle of code extension, that is, with the representation
of information which cannot be directly represented by means
of the characters in the Code. The manner of use of these
characters has not previously been completely described.

This paper presents a set of mutually consistent philosophies
regarding code extension applications, and suggests a corol-
lary set of doctrines for the application of the code extension
characters. Distinctions are drawn between code extension
and such other concepts as “graphic substitution” or “syntactic
representation” which are often used to meet similar require-
ments.

Also covered are certain topics which are not truly con-
cerned with code extension but which are often linked with it
in discussion on code applications.

The material in this poper is equally applicable in principle
to the (proposed) ISO international 7-bit cede for information
interchange.

1. Introduction

In the establishment of a general purpose code such as the
American Standard Code for Information Interchange (ASCII),
or its international counterpart, the ISO 7-bit code, a fundamental
decision must be made as to the size of the code. In making such a
decision there is usually a conscious effort to avoid the most obvi-
ous problems with a code which is either too large or too small.
Should the number of characters included be too small, many
individual users will find their needs not accommodated, and will
be forced to adopt ““parochial” codes for their applications. Should
the number of characters be too large, many potential users will
find the standard code disproportionately costly to implement, or
untenably inefficient in transmission or storage, and will again be
driven to the use of some other code. Thus, either extreme in code
sizing will reduce the generality of application of the code, defeat-
ing the very purpose of standardization in this field.

The 7-bit size (128 characters) adopted for ASCII is thought to
be near optimum at present with respect to the above considera-

* ASA Document X 3.2/368, March 11, 1966.

758 Communications of the ACM

tions. Nevertheless, there will doubtlessly be numerous applica-
tions with requirements that are not accommodated by a code of
this size, or at least not by the specific characters assigned within
it. Still, it is hoped that many of these applications can be served
by the use of the standard code augmented in some appropriate
manner. Through such an approach, the user may be able to imple-
ment much of his system with standard hardware or software.
More significantly, perhaps, he will thereby be able to retain
compatibility with other systems for the interchange of that in-
formation which can adequately be directly represented by the
standard code.

The concept of augmenting the standard code for such purposes
may be spoken of in a generic way as “code extension,”’ although
later we will restrict our extensive use of this term to a particular
class of approaches. :

The codes with which we are concerned contain four characters
whose definitions indicate. their relationship to code extension.
They are:

SO (Shift Out)

SI (8hift In)

DLE (Data Link Escape)

ESC (Escape)

SS (Start of Special Sequence)

The use of these characters is not treated in detail in the code
standards. Actually, the very nature of code extension inherently
limits the degree to which standards for it may be constructed: it
is a means of operating ‘“beyond the standard.” Nevertheless,
there are several advantages to establishing a unifying general
philosophy. i

First, such a philosophy can prevent undesirable conflict be-
tween independently contrived applications of code extension. For
example, a code extension procedure used by a data communica-

tion terminal device should be inherently free from any hazard of

conflict with a code extension procedure used in a communications
system which may be called upon to serve the terminal.

Second, the availability of such a general philosophy can pro-
vide guidance to system designers to facilitate the advance inclu-
sion of general provisions for code extension operations in informa-
tion handling equipment. .

Subsequent sections of this paper describe such a unifying
general philosophy. It is directed at the application of code exten-
sion to those portions of a system where the use of the standard
code itself would ordinarily be appropriate; that is, in what is
spoken of as “information interchange.” ‘ ’

Naturally, there are other functions within many information

Volume 9 / Number 10 / October, 1966

o b st

inte
sta:

apg
to -

sur

8pe
cor
ch:
not
use
apj

gr.
spe

PR LY

—_ - _"""—’(‘ O]

interchange systems for which an extremely unusual usage of the
standard code, or some entirely different representation of infor-
mation (e.g., the points of a character matrix), may be entirely
ap’propriate. Such functions are often thought of as being internal
to some autonomous system component., Just as the code standard

is not presumed to be appropriate for such functions, it is not pre-

sumed that the philosophy outlined below is appropriate for them,
" The suggested procedures presented here for the use of the five
speeial control characters for code extension should in no way be
considered to deprecate the practice of using sequences of graphic
characters to represent machine instructions, graphic characters
not -otherwise available, and so forth. Programming languages

- used in data processing, for example, are based upon such an

approach.

It is hoped that the material in this paper will provide back-
ground to help a system designer choose among all the various
specific approaches in the face of any particular requirement.

The American Standard Code for Information Interchange con-
sists of two general categories of characters, graphics and controls.
There are 32 controls, 95 graphics, and the character DEL (Delete)
which in reality is neither. The 95 graphics include both upper and
lower cases of the Latin (often called “Roman’’) alphabet, the
Arabic numerals 0 to 9, a number of punctuation marks and special
symbols, and SP (space), the “nonprinting graphic.”

2. Graphic Set Extension: Use of SO (Shift Out)
and SI(Shift In)

There are a number of applications which are not adequately
accommodated by the graphic set of the standard code. The most
prominent examples are those of systems in which special symbols
are required by some scientific discipline or commercial usage (for
example, meteorology), and those requiring the use of languages
which cannot be directly represented by the Latin alphabet, such
as Russian. Of course, these needs could often be met through
graphic substitution: that is, by adopting for the system a code
which differs from the standard code in that certain standard
characters are replaced by the special ones which are required. The
displaced standard characters are, however, naturally lost to use
by such a system. However, it will often be desirable for the system
to have the capability of printing (or otherwise handling) such
special graphics, while retaining the ability to communicate with
other system: using the standard set of graphics. A suggested pro-
cedure is to use the characters SO (Shift Out) and ST (Shift In) to
select which one of two sets of graphics is to be associated with the
95 “‘graphic’’ positions of the code. SO indicates that an alternate
graphic set, containing the necessary special symbols (and per-
haps some standard graphics as well) is to be put into foree. ST
brings about a return to the standard set of graphies.

The set of 32 control characters in the code and the character
DEL (Delete) should not be affected by the shift operation. It is of
course possible that the use of a new set of graphics may require a
corollary change in the execution of a control within its standard
definition. For example, if the alternate graphic set contains
characters which are given a larger typographical size than those
of the standard set, the character Line Feed may have to produce
a larger motion when the alternate set is in use. This is of course
not construed as a change in the control character set.

There is no implication that the alternate set should be entirely
different from the standard set. It may contain whatever reper-
toire of characters are needed for operation in a particular environ-
ment. For example, the alternate set might retain the standard
letters and numerals but replace certain punctuation marks with
weather symbols. In another application, the lower case of the
alphabet might be replaced in the alternate set by special mathe-
matical symbols, while the upper case alphabet, the numerals, and
the punctuation marks are retained. It is recommended that any
symbols common to both the standard and alternate sets be
assigned to the same code table position in both. It is also advis-
able to leave SP (space) in the alternate set whether required or

Volume 9 / Number 10 / October, 1966

not, as many printing mechanisms treat it separately, not actually
behaving as if it were a graphic. '

Application to Devices of Modest Repertoire. It should be noted
that useful application of these principles may in some cases be
made in devices having a relatively modest capacity for different
graphics. Consider, as an example, the problem of making a termi-
nal device to render messages in both Latin (standard) and Greek
(alternate) alphabets, and requiring the conventional numerals
and punctuation in connection with either. In many situations it
would be satisfactory to render all letters in the upper case: that
is, the receipt of the coded representation for either A’ or ‘“a”
would cause ““A”’ to be printed.! Extending this principle to the
gpecial symbols coded in the same area of the code with the letters,
one can see that 32 printing characters can suffice for 64 characters
of the code. (Actually 63, since DEL, though coded in the graphic
region, is not a graphic.) Adding provision for the 10 numerals and
the 22 remaining symbols, the machine need have but a 64-charac-
ter graphic capacity for its work in the Latin alphabet.

An additional 31 printing characters can serve, in the same
manner, for both the upper and lower case Greek alphabets and
some associated special symbols when in the alternate set. The 10
standard numerals and the 22 standard punctuation marks are
used in the alternate set operation. This postulated applieation
can therefore be implemented in this manner with a terminal
device having only the 95-character graphic capacity which would
ordinarily be required for full rendition of the standard set.

Such a device when in its standard mode may receive, without
hazard, information containing any of the 95 ASCII graphics. If a
graphic set shift were not used in this application, the bilingual
capability could only be served with a 93-graphie printer by mak-
ing the Greek alphabet a graphic substitution for the L. Latin
letters in the code table. The device could not then be safely used
for interchange of information with systems which might use the
lower case Latin letters, since the receipt of these would of course
cause the printing of Greek letters.

Multiple Graphic Sets. In many applications there will be a
need for many alternative graphic sets. Applications in the graphic
arts industry will often be of this class. It has been frequently
suggested that, to cater to such needs, provisions should be made
for the use of a suffix after the character SO to indicate which
alternate set is desired. Actually, however, such a procedure ap-
pears to be neither necessary nor desirable. It is extremely attrac-
tive to reserve SO for use, by itself, to select the single alternate
set in systems having but two sets,? and for selecting the principal
alternate set in systems having several sets. The additional alter-
nate sets, if provided, should preferably be invoked according to
the following philosophy:

If there are several alternate sets to be invoked, there is, in
effect, a need for the control functions 80, 807, 807, ..., to put
them into force. Of these, only SO is directly represented in the
code, 30 some other means must be found to represent SO/, SO”,
etc. There is, however, a general method of representing additional
control functions through the use of sequences prefixed by ESC
(Escape) (see the next section). Therefore, it is recommended
that the additional shift controls required in a multiple-set sys-
tem should be represented using Escape. This approach avoids any
possible need for one device to be capable of handling two types
of control-representing sequences, one type prefixed with Escape
and the other with SO.

Regardless of the set currently in use, the character SI puts the
standard set into effect.

! This technique is already widely in use where 64-graphic print-
ers are used in systems which utilize all 95 graphic characters.

* Such systems may be of appreciable commercial significance.
A prominent example is that of a message handling system in a
country having a non-Latin national alphabet, where the national
and standard (and therefore international) alphabets are both use-
ful. ,

Communications of the ACM 759

,.,_,,..«'

In some multiple-set applications there may be a need to re-
peatedly transfer back and forth between the standard set and a
particular alternate set. The following approach could be useful in
such situations, and is consistent with the philosophy already
described: :

The specific alternate set to be used is nominated as ‘the
alternate” through the use of an associated control function
{represented as an Escape sequence). SO then causes the nomi-
nated set to be put in effect in lieu of the standard one. SI, as
always, restores the standard set, but does not effect the status of
the nominated alternate set, which can be invoked again with SO
when required. Nomination of one of the other sets as the one to
be invoked by SO is done with another associated Escape sequence.

Automatic Restoration. It is recommended that terminal de-
vices and other such equipment be arranged to automatically
revert to the use of the standard graphic set whenever the associa-
tion of the terminal with another terminal or system has been
discontinued or suspended: that is, at the beginning or end of a
call, transaction, transmission, or whatever is appropriate.

3. Control Set Extension: Use of ESC (Escape)

The expected requirements for additional controls beyond those
assigned in the code are somewhat different from those for addi-
tional graphics. It is typical of systems requiring additional
graphics, that the graphics may often be used in groups and for an
extended period, such as when printing text in a foreign language.
On the other hand, it is more typical controls that they appear
sparsely throughout the information. For this reason, the recom-
mended doctrine of obtaining additional controls does not provide
for replacing the standard set of control characters with an al-
ternative one, but rather for the one-at-a-time representation of
additional controls by sequences of existing characters. These
sequences are called “code extension sequences,” and the term
code extension is most directly applied to such representation of
additional controls.

In order that a code extension sequence may invariably be
identifiable as such, each such sequence begins with the prefix
character ESC (Escape), which has no other use. (The name Es-
cape is perhaps a little misleading in this respect: tke character
was initially established as a signal that subsequent operation was
to be “not in the standard code.”) Hence, these code extension
sequences are also called “Escape sequences.”

It was at one time proposed that code extension sequences
should be standardized as consisting of ESC and a single-following
character. While this would be adequate for many applications,
there are a number of considerations which may make longer
sequences desirable in many cases. One such consideration is just
that of having an adequate number of sequences available for the
functions required in one system, or in a number of systems re-
quiring nonconflicting function representations. Another con-
-gideration is that it is sometimes desirable to represent a critical
function by a long sequence to gain security against accidental or
malicious operation. A third consideration is the desire, in some
systems, to have a mnemonic relationship between the character
sequence and the designation of the function to be controlled.

In many systems it may be appropriate to establish some fixed
length for all Escape sequences. In other systems, it may be of
great utility to have available a doctrine which allows sequences of
various lengths to coexist in the same system. Paramount among
the requirements for a variable-length doctrine is the need to have
a simple means for a device to determine the end of each sequence
which it receives: that is, how many of the characters following
ESC are associated with it. This is necessary so that the device
may avoid giving the normal interpretation to individual charac-
ters of a code extension sequence, even when the specific sequence
is not to be recognized and acted upon.

The following approach is suggested for the assignment of

760 Communications of the ACM

sequences for those systems in which it is desired to use sequences
of varying lengths: '

The characters of the code are divided into two groups, called
“intermediate” and “final’’ characters, respectively. (The basis
for making a particular partition into these two groups is discussed
later.) Any Escape sequence begins with ESC, continues with any
number of “intermediate’” characters (including none), and ends
with one “final’”’ character. Thus, any device recognizes an ESC
as indicating that the characters which follow form a code exten-
sion sequence up through the next “final” character.

Thus, if we represent ESC by “E,” any intermediate character
by “I,” and any final character by “F,” the allowable sequences
are of the forms EF, EIF, EIIF, EI, . . ., IF, ete.

. Partition of the Code. There are a number of criteria affecting
the way in which the characters of the code will be divided into
“intermediate’’ and ‘“final’”’ groups. Among the significant ones
are:

1. “Intermediates” should be distinguishable from ““finals” by
a simple logical test, preferably by the sense of 1 bit in the coded
representation. ,

2. A given class of character, such as alphabetic, numerie, etc.
should be entirely within one group.

3. Upper- and lower case of any specific alphabetic character
should be in the same group. This allows a system desiguner to
assign sequences so that no distinction is made on the basis of
case, if desired.

4. A reasonable number of 2-character (i.e., ESC plus one
“final”’) sequences should be available which use only letters or
numerals, because such sequences are convenient for use by
humans.

5. The “final”’ group should contain some characters which are
likely to occur with reasonable frequency in a stream of data. This

ensures that, should the legitimate final character of a sequence be

lost or mutilated, the system will soon be restored to its normal
mode of character interpretation.

Two specific partitions have recently been given serious con-
sideration. The first meets most of the criteria, although it is not
as easy to implement as the other. In this partition, columns 2 and
3 of the code table (numerals, punctuation, and special symbols)
are “intermediate’” characters; all others are finals. Thus, a 2-bit
logical test is required to identify the class of a character. Never-
theless, this partition allows a number of attractive features:

1. A reasonable number of 2-character sequences can be made

using only graphics. Even if the “special symbols’’ are not used,

there are 26 sequences which can be formed if no case distinction
is desired, or 52 if the two cases are treated separately.

2. There are 260 (or 520, again depending on the use of case
distinction) 3-character sequences using only alphabetic and
numeric characters.

3. Two-character sequences may be created with controls; this

may be attractive where an alternative version of a standard con- -

trol function is involved. Thus, ESC LF could be a sequence repre-
senting ‘“half-line feed.”

4. Longer sequences may be created with a control at the end
and including numeric indices. Thus, ESC 3 5 DC2 could mean
“‘gwitch device 35 to state 2.”

On the other hand, in some applications alphabetic abbrevia-
tions for functions and devices are desirable, this partition does
not allow a sequence to contain multiple alphabetics.

- Partitions based on a single-bit difference between the two
classes will probably be easier to implement in many devices. The
leading candidate for such an “equipartition” is one which makes
the left half of the code table (controls, numerics, punctuations
and special symbols) “final’’ characters, and the right-hand half
“intermediates.” This arrangement reverses the role of alphabetic

and numeric characters with respect to the features previously

described, thereby somewhat diminishing the utility of the
scheme. :

Volume 9 / Number 10 / October, 1966

bt

|6

o

-

s

The opposite arrangement has also been proposed. This retains
the desirable relationship between alphabetics and numerics, but
precludes the possibility of 2-character sequences using controls.
““Further investigation of both implementation and application
ramifications of these various partitions will be required before it
will be possible to recornmend one as being preferred.

. Restrictions. There are some additional restrictions which are

- recommended in order to avoid certain potentially serious prob-

lems.

The ten communication control characters should never be used
in Escape sequences. Such use could cause interference with the
control logic of communication systems through which the data
may be passed, unless the systems were arranged to detect the
sequences and determine their lengths, an unnecessary burden.
These ten characters are:

Code Table

Designation Name Column/Row
SOH Start of Heading 0/1
STX Start of Text 0/2
ETX End of Text 0/3
EOT End of Transmission 0/4
ENQ Enquiry 0/5
ACK Acknowledge 0/6
DLE Data Link Escape 1/0
NAK Negative Acknowledge 1/5
SYN Synchronous Idle 1/6
ETB End of Transmission Block 1/7

Also, additional communication controls should preferably not
be represented by ESC sequences, but rather by DLE sequences,
as described in the next section.

The use of control characters in ESC sequences should be
avoided whenever possible, unless the control function being
represented is related to the control used in the sequence. For
example, to use a sequence of the form ESC BEL to control a
second audible signal seems unlikely to produce any difficulty.

The character DEL (Delete) should not intentionally be
assigned in ESC sequences, as this character may appear un-
predictably in some systems as a result of correction of operator
errors in perforated tape. ESC itself should also not be inten-
tionally included, especially since in some attractive partitions it
is a “final” character; thus it would mean at once that the se-
quence was starting and ending, a paradox to be avoided. (Those
partitions having controls as “intermediates’” avoid this problem
entirely, though that is probably not a compelling advantage.)

“Locking” and “Nonlocking” Controls. In many previous
papers and discussions about code extension there has been an
unnatural concern with the difference between “nonlocking’ and
“locking’’ Escape sequences; that is, between those whose func-
tion is of a temporary nature—*‘ring auxiliary bell’’—and those
whose function is persistent, such as “print red.”” There is no need
for this concern as long as the control function is similar in nature
to those directly represented in the code, such things as format
effectors, information separators, device controls, and such. These
existing controls also include both ‘‘nonlocking’ and “locking’
functions, a fact which has (rightly) caused little concern. Note
that the suggested ways of utilizing ESC do not carry the concept
that ESC by itself is a way of switching the device into a different
mode for any extended period of time. The device is only in a
different mode to the extent that those characters intimately
associated with the ESC are given a new interpretation.

There is another concept associated with this groundless con-
cern which is inappropriate from a more serious viewpoint. Often
people speak of the use of an Escape sequence (or of Escape itself)
to “put the system into another code.” This concept is an abstrac-
tion which cannot be discussed unless more specific details are
ascribed to it. Suffice it to say that no general provisions for such
behavior can be standardized in any meaningful way. A similar

Volume 9 / Number 10 / October, 1966

problem exists with respect to certain concepts of so-called
“transparency’’; this matter is discussed in the section of that
name. S ‘

It has been recommended that terminal devices clear them-
selves of any *‘abnormal’” state when their association with
another terminal or system has been discontinued or suspended.
This is, of course, equally desirable whether the ““abnormal’’ state
is achieved by local control, by the receipt of a control character,
or by the receipt of an Escape sequence. In addition, should such
association be discontinued or suspended during an ESC sequence,
the sequence should be considered aborted.

Use of Escape for Additional Graphics. The question is often
raised as to whether it would be appropriate to use ESC to create
additional graphies. There are two ways in which this might be
done. One way is the use of ESC sequences to represent additional
“shift’’ controls, as discussed above under Graphic Set Eztension;
these additional shifts indeed create representation of new
graphics, but the ESC sequence has merely been used to represent
additional controls, an orthodox procedure.

The other possible procedure would be to use ESC sequences to
represent individual additional graphics. While there appears to be
no hazard associated with such a usage, it should be kept in mind
that such an operation may be extremely cumbersome to imple-
ment in many devices.

Standardization of Escape Sequences. It has often been proposed
that provision be made for standardizing specific sequences to
represent control functions which have become widely enough used
to justify such action. Although this is an attractive notion, there
are a number of obstacles to its implementation. Prominent among
these is the need to reserve a ‘“block” of sequences for use by the
standardizing body as the need arises. Any such “reservation’’
would appear to intrude upon the individual user’s ability to
optimally solve his own problems. Attempts to devise a procedure
to allocate blocks of sequences based upon the final character, or
upon the character immediately after Escape, have produced un-
attractive results.

A recent proposal is to reserve for future standardization all
sequences of some specified length or lengths. For example, it
might be established that any standardization of sequences for
specific functions would be done with 3-character sequences
(E-I-F structure). Thus users could use any 2-character sequence
for special purposes without fear of later conflict. Such short
sequences are attractive for functions which, though specialized,
are used frequently in the systems requiring them. Users desiring
long sequences may also assign them without worry.

Adoption of such a concept could perhaps lay the groundwork
for standardization of sequences at some future time.

Printing of ESC. The question is often raised as to whether or
not typical terminal devices will print a symbol for ESC. It is
expected that there will be printing devices capable of printing
symbols for many or all of the control characters. Nevertheless,
it is a basic concept of the code that, in the ordinary appli-
cation, the control characters will be nonprinting. Control-:
printing devices would thus be primarily for monitoring, mainte-
nance, and similar functions.

When a need is expressed for ESC to print, it is instructive to

- ask, “if there were a character in the code for this function, would

we want if to print?”. If the answer is “‘no,”’ then it is reasonable to
suggest that the- ESC (and the rest of the sequence, for that
matter) not print. The nonprinting of ESC will no doubt be in-
herent on most devices as it is a control character; nonprinting of
the rest of the Escape sequence may be easily controlled by virtue
of the simple way in which beginning and end of a sequence are .
delineated. ,
If the answer is “yes,” then either:

1. The application calls for a “monitoring type’ printer any-
way, and when one is provided the ESC will print; or

2. The function is in the nature of a program instruction, or

" Communications of the ACM 761 '

an abbreviation for something, and should be represented by the
syntactic use of graphics anyway, as is traditional in programming
languages.

As usual, the establishment of clear relationships between the
purpose of Escape sequences and that of directly represented con-
trol characters will generally make the answer to such dilemmas
obvious.

4. Code Extension for Communication Controls: Use of
DLE (Data Link Escape)

Recommendation of any specific doctrine for the use of DLE
falls within the jurisdiction of ASA Task Group X3.3.4, Communi-
cation Control Procedures. Their recommendations to date are
contained in a number of tutorial papers? issued by that group.
The subject is discussed in this paper only to show the relation-
ships of this use to other aspects of code extension.

It is necessary for a communication system to be able to readily
distinguish between the communication controls which are of
concern to it and other controls with which it is not concerned.
The assignment of specific communication control characters in
the code provides this distinction under ordinary circumstances.
It is necessary that this distinction be preserved when additional
controls of one type or the other are represented by code extension
sequences. The character DLE (Data Link Escape) is provided
for use in lieu of ESC as the first character of code extension se-
quences used to represent additional communication controls.
Thus, communication link control logic may ignore ESC entirely,
passing it and the characters which follow as any other ‘‘text”
characters. Code extension sequences of concern to the communi-
cation control logic can invariably begin with DLE, to which the
logic may be made sensitive.

The prohibition previously expressed against the use of com-
munication control characters in ESC sequences is intended to
prevent direct interference with the communication control logie.

5. Concept of “Special Sequences’’: Use of SS
(Start of Special Sequence)

The concepts previously described involve changing the “mean-
ing” of characters in the code. That is, the coded representation
which ordinarily denotes “plus’’ may denote ““radical sign’’ when
preceded by SO; the representation for ““Z’’ may denote ‘‘print
red”’ when prefixed by ESC.

There is another related type of special behavior which may be
usefully distinguished from the above-mentioned types. In this
class the meaning of the characters is, in effect, not to be changed
but merely the action which is to be taken upon their receipt.
(Keep in mind that the code standard does not prescribe the action
to be taken upon the receipt of a character. This is a function of
the application of the code in a particular device.)

A homely analogy may be drawn from the world of the theater.
The word “‘enter” as part of a stage direction calls for a different
action on the part of the actor than the same word in the lines to
be spoken; yet, the letters e-n-t-e-r do not really change meaning.

In the information processing field there are numerous similar
examples. Commands to the time-sharing executive program of a
computation system need to be distinguished from program or data

statements. Device controls used to represent functions such as-

‘“‘punch off”’ often need to be flagged as not applicable to the
peripheral device through which they pass at a certain time—
otherwise one would perhaps be unablé to cause an output punch
to punch “punch off”’. (This is equivalent to the bypass/restore
concept often used in perforated tape systems.)

3 A summary will be found in: Comm. ACM 9 (Feb. 1966), 100
el. seq; see especially Section 6.

762 Communications of the ACM

The character SS (Start of Special Sequence) is recommended
for use to indicate the beginning of a collection of data requiring
some such special handling. Due to the extremely diverse nature
of the possible applications, it is impossible at this time to propose
a more detailed standard doctrine for such applications. In par.
ticular, the extent of the data over which the connotation of spe.
cial handling extends (the length of the ‘‘special sequence’’) is not
prescribed, nor is any particular character to mark the end of such
a sequence. Appropriate arrangements must be made in the face
of the requirements of a particular application.

6. Transparency and Its Relationship to Code
Extension, If Any

When topics such as those above are discussed there almost
invariably arises some reference to the concept of transparency.
This term broadly refers to those properties of an information
handling system which allow it to handle data which it could not
handle if it did not have 36 much transparency. For example, if
one has & communications system which will only pass 118 of the
ASCII characters (because the other ten are reserved for internal

use by the system), and one wishes to send text including some of »

the forbidden characters, it is said that (more) transparency is
needed. If one has a paper tape system which can only handle 7
bits of information per frame (perhaps because the eighth track
is committed to parity), and one wishes to record 8 bits per frame,
again it is said that (more) transparency is needed. Obviously
there are as many different types of transparency as there are
parameters of an information handling system.

Many workers in this field have suggested that any doctrine for
code extension should include *provision for transparency.” The
concept of transparency which is inherent in this suggestion is an
abstraction which is not susceptible to specific treatment. Only
when specific problem components are identified and described
can solutions be synthesized, and the part played in such solutions
by code extension may then be determined.

In general, the relationship between ‘‘transparency’ and code
extension is no more nor less than this: If there is a need in an
application for some specific type of ‘‘transparency” it must be
built into the system involved. If additional control functious are
needed to manage the application of transparency, or to control
the system in the face of its new-gotten transparency, perhaps
these can be obtained through the use of code extension.

An example of this may be found in the doctrine proposed by
Task Group X3.3.4¢ for the control of communication systems
possessing a certain type of transparency in order to meet certain
specific objectives.

In this doctrine, DLE sequences are used to represent controls
to invoke the particular transparent properties which the system
may have, and to represent the additional control functions re-
quired to unambiguously control the system while it has these
properties.

6. Conclusion

It is felt that the philosophies and recommended doctrines de-
scribed herein form a useful and mutually consistent structure
for handling a number of related problems. It is not imme-
diately apparent in what way standards may be written to facili-
tate the consistent application of these concepts. It is hoped that
the publication of this paper will elicit comments on the relation-
ship between these proposals and known applications that will
give guidance in that respect.

4 Comm. ACM 9 (Feb. 1966), 100 et seq, Section 7.
Comm. ACM 8 (April 1963), 203 et seq.

Yolume 9 / Number 10 / October, 1966

an

o

