E - « 3 g Ln..,ﬁﬁ.g Yol

Sl —_e

RECEIVED
PROJECT MAC ~ .
JUL 8 1365 |

Sheet 1 Of 5

500

DATA LAYOUTS IN ENPL FOR THE GE636

M, D, Mcliliroy
May 12, 1965

These data layouts will be adhered to for argument passing
to external procedures by both ENPL and all later versions
of NPL for the GE636 system..

SPECIFIERS

Some data in NPL will be referenced directly by the object

~ code. Some will be referenced Indirectly through specifiers

that give information about the layout of the data as well
as lts location. Specifiers are used for :
- label data and entry names
string data
arrays
structures
and probably for flles

Specifiers always consist of an iTS pair pointing to an

" addrass for the data plus additional information which we

shall call dope. The dope for different sorts of data may
be different. '

SCALAR DATA

Single and double precision floating point numbers will be
stored in the natural forms, Double precision floating
point quantities will sit at even focations. Single or
double precision will be assigned to cover the declared
precision,

Binary fixed point numbers will be stored right Jjustified.
Widths less than 36 will occupy a single word, widths 1less
than 72 will occupy an even-odd pair. The limiting width of
fixed binary arithmetic will be 71 bits; fixed overflow will
result from bits outside 71 that appear in intermedlate
answers in arithmetic. Default flxed point precision Is 17
bit binary integers.

Decimal fixed point numbers will be kept as right-justified
binary integers with Implied decimal scaling. Fixed
overflow will be the same as binary fixed overfiow.
Truncation that occurs in storing decimal data will be to

S e Boe o i

PAGE 2

the encompassing binary size.
Label data and procedure parameter specifiers will have the
form
0 (mod 2) ITS to program polnt
2 iTS | stack pointer when 1abel
was first assigned.

String specifliers wili have the form

0 (mod 2) ITS to data addressing origin

2 LMD length, max, and offset

"~ The quantity known as LMD 1Is a two-word ‘item in the

following layout, No distinction Is made between bit and
character strings.

0 (mod 2) 0-17 L length in bits, less than 2##18

0 18-35 M max imum length in bits

1 0-35 D of fset of first bit of string
from addressing origin, counted
in bits (mod 36%2+%18)

Varying strings will be dynamically allocated and will only

occupy the number of words required by thelr current length.

ARRAYS

Array specifiers consist of a pointer to the addressing
origlin of the, array together with (the dope) a pointer to a
dope vector, which gives the dimensioning ‘Information for
the array. Arrays of strings may have further Information
specifying the strings in the dope. The addressing orfglin
is the position that would be occupied by the 0,0,...,0
element of the array [f It existed.

Dope vectors have the form.

0 (mod 2) n . number of dimensions
1 , unused

2 ibl lower bound of first dim
3 hbl upper bound of first dim

PAGE 3
2n iéé lower bound of n=-th dim
2n+1 hbn upper bound of n-th dim
2n+2 ml multipllier for first dim
3n+l %6 multiplier for n-th dim

The multipliiers are used in mapping from subscript values to
addresses relative to the addressing origin, For packed
arrays of nonvarying strings the muitipiiers read in blts,
for all other arrays the multipliers read In words.

The address of an array element A(sl,sz,...,én) is
calculated by the formula

address origin + slsml + .., + sn*#mn (mod k)
where k=2%+18 If the muftipl!ers afe In words and
k=36+2++18 I|f the multipliers are In blts, In the baslc
case of arrays that are nelther cross-sections nor DEFINED,

mn will be the slze of a data Item, and the other
multipliers wiill be glven by

mj = (hbl = 1bi + 1)#mi j=1-1
The speclfler for an array of scalars not strings will have
the form
0 (mod 2) iTsS "~ addressing origin
2 ITS to dope vector

The specifier for an array of'nonvarying strings will have
the form

0 (mod 2) ITS addressing origﬁﬂ
2 ‘ LMD of addressing origin
by ITS to dope vector

The specifier for an array of vary!ng'strﬂnzs will have the
form '

0 (mod 2) ITS addressing origin for array
of LMD palrs

e —

LS

o i

PAGE &
2 ITS to dope vector for array of
LMD pairs
L ' ITS addressing origin of strings

" There will probably be an aligned-vs-packed indicator in the

dope vector for an array of strings. This could go well Iin
the "unused' word of the dope vector.

STRUCTURES

Specifliers for major structures will have the form

0 (mod 2)_ 1TS addressing origin

2 17s to structure dope vector

b ITS addressing origin of varying
strings A : ’

i

A dope vector for a structure or array of structures will
have the form R

0 (mod 25 ~ p0 to array dope vector
1 pl to first substructure
k pk to k=-th substructure
\ Pointer p0 is 0 for structures without dimensfon. The

substructure pointers pf have several Interpretations
depending on the substructure:

1. Elementary substructure, except non-varying string.
Pointer p! points, in the data segment relative to the
origin given - in word 0 of the major structure
specifier, to the addressing origin for this data f{tem
(to specifler if the item {s a label; to LMD palr I{f
the ltem Is varylng string).

2, Non-varying string. Pointer p!{ points, in the dope.
vector segment relative to the origin given In word 2
of the major structure specifler, to an LMD palr for
the addressing orlgin of thls data item.

e ettt e e e e e m i IR R Lu. LR ,._u_.d e e rnes sae e e

PAGE 5

3. Non-elementary substructure. Polnter pi points, in the
dope vector segment relative to the origin given 1in
word 2 of the major structure specifier, to the
substructure dope vector.

If an array of structures contains one or more substructures
of types 2 or 3, .its gross dope vector consists of the
structure dope vector, followed Immediately (mod 2) by the
array dope vector then the gross dope vectors or LMD pairs
for these substructures taken in order,

ARGUMENTS
Argument 1ists, which wiil be pointed to by ap fin the

standard calling sequence, wiil be a vector of 7S palrs
polnting to data or specifiers, whichever {s appropriate.

T

