s/ |4

TO: F. J. Corbatd
- R. C. Daley
J. H. Saltzer . . .
FROM: R. Rappaport, M. Spier

SUBJECT: Timing test of New Traffic@ Controller

An experiment has been performed that allowed us to meter the amount of
time spent executing the various traffic controller functions, The
experiment consisted of having two processes cooperate in waking up each
other, blocking themselves, notifying each other, etc. The two processes
followed ‘different scripts which consisted of a number of calls into the
traffic controller, The scripts ére reporduced below. At the start
process A is running and process B is blocked:

Process A script Process B script

1. cali pxssSwakeup (B)
2. call pxss$block 3, call pxss$Wakeup @A)
4, call pxss$block
5. call pxss$wakeup (b))
6. call pxss$block
7. call pxss$wakeup (A)
8. call pxsnotify (10)
9. -call pxss$addevent (10)
10. ' call pxss$w§it (10)
11. call.pxss$notify (10) ‘
12, call pxss$block

13. call pxss$notify (11)

14, call pxss$addevent (11)
15. call pxss$delevent (11)-
16. call pxss$wait (11)
17. call pxss$wakeup (A)
18, call pxss$block

19. gotol

20, go to 3

The experiment went as follows. In steps 1 and 2,A wakes up B and then
calls block. This results in A giving up the processor and B beginning to
run, Steps 3 and 4, 5 and 6 are similar. After step 6, B is running and
A is blocked. B then wakes up A (step 7), notifies an event for which no
one is waiting (step 8), creates event 10 (step 9) and waits for it (step 10).
In waiting for the event, B gives up the process and A (now ready because
of step 7) starts running. A now notifies all those waiting for event 10
(i.e., B is now on ready list) and blocks itself causing B to run. B

then proceeds to notify an event for which no one is waiting (step 13),
create an event (step 14), deleted the event (step 15), waié.for the deleted
event (step 16) which results in an immediate return, wakeup A (step 17)
and finally go blocked., The looping instructions cause the striﬁg to be

reexecuted,

In the run extra instructions were placed in the Traffic Controller which
had the effect of storing the value of the calendar clock (into an array)
upon entry to all the entry points of the traffic controller. As a result,

the time to wakeup a blocked process could be obtained by subtracting the

time stored at step 1 from that at step 2 or similarly subtracting the

time at step 3 from the time at step 4, etc. The storing of the clock times
and the maintenance of array pointers added the execution of 15 instructions
to each call. The results of the subtractions for three loops through

the scripts were as follows., Notice the circled out of place numbers.

These were shown to be caused by clock interrupts triggered by the imetering
routines, Times are in micro seconds.

1. Time to wakeup a blocked process:

Ty-Ty T, Ty T Ts Tg~Ty T187T17

b
loopl 879 908 877 911 904 W 7‘"'
o
(O

loop2 882 904 878 911 904

loop3 882 904 911 904

2, Time to block (I.e., to block self, choose a successor to run, switch

to him and return to where he blocked himself.)

T,-T, T T, T,-Tg
loopl 1379 @ 1379 .
loop2 1389 1407 1379
loop3 1389 1407 1379

3. Time to.wait for something (i.e., put self in wait state, choose

successor, switch to him, and return to his procedure)

T117T10
loopl 1277
loop2 1277

loop3 1277

. Time to wait for nothing (i.e., an event that doesn't exist, perhaps

all ready notified)

T177T16
loopl 230
loop2 230
Loop3 230

Time to notify an event for which someone is waiting

T2
loopl ' 340
loop2
loop3 340

Time to notify an event for which no one is waiting

To~Tg BYVAE
loopl 237 237
loop2 237 237 .
loop3 237 237

Time to add an event

T107T9 T157T14
loopl 231 227
loop2 231 227

loop3 231 227

8. Time to delete an event

T167T15
loopl 235
loop2 235
loop3 235

9. An additional experiment was performed for each of the processes. They
were allowed to run out their time quantuns, reschedule themselves, choose
a successor which turned out to be themselves and switch back to them-

selves. This took 1454 msecs for process A and 1511 msec for B.

We can interpret these figures in the following way., It takes about 1,3-
1.4 milliseconds to give a processor away. This comes from looking at
the block, wait}éé&i restart times. It takes about 850 msecs to wakeup
; blocked process. Total block-wakeup time is about 2 milliseconds.
Notifying seems to take about 200 mseconds plus ~ 100 msecs per process

waiting. Total addevent, wait, notify time takes about 1,8 milliseconds,

