MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

Reply to: Project MAC
545 Technology Square
Cambridge, Mass. 02139

Telephone: 1617) 864-6900 x6201

January 29, 1968

TO: F. J. Corbatd and C. T. Clingen
FROM: J. H. Saltzer

SUBJECT: Effect of EPL on Traffic Control module.

R. L. Rappaport has reported that execution time for a comp lete
trip through the modules of the Traffic Controller requires about 10 ms.
Conversations have not revealed any obvious insight as to why this time
should be so large. This weekend I made a brief study into one traffic
controller module to see what could be learned. The results indicate
some of the problems of writing effficient code with the EPL compiler.

The module chosen for study was the external procedure named
block. This procedure constitutes 38 EPL statements including calls to
other internal procedures of the Traffic Controller but not including
the statements of those internal procedures. These 38 statements com-
pile into 339 locations full of EPLBSA instructions, and thus constitute
about 20 per cent of the 1655 instructions of the segment px. (The
only parts of the Traffic Controller not included in px are the scheduler
module and the EPLBSA stack switching module used to enter px.)

Since for the most part the Traffic Controller has neither
loops nor long sequences rarely executed, we may take as an approximation
that its execution time is proportional to its length. This is especially
true in the block procedure, which has no loops and only a couple of
minor branches. We therefore examine carefully the reasons why the
length of the block module is what it is.

The first observation is that of the 38 statements of block,
17 are concerned with setting on and off individual process state locks.
Using instead a single global interlock for the Traffic Controller,
these statements can be condensed to four; over 1/3 of the EPLBSA instruc-
tions disappear at the same time. Assuming that this redesign were made,
the following statistics (obtained by counting instructions rather than
by recompiling) hold:




F. J. Corbatd and C. T. Clingen
Page 2
January 29, 1968

Original length of block 339
Extra locking statements - 103
Length of block with global interlock 236

A second observation is that the EPLBSA code is filled with an
unseemly number of and instructions and specifier manipulation, which
trace directly to bit string arguments and data items. Inspection
showed that all of the bit strings concerned were either 1l-bit items
stored in a whole word, or 72-bit strings stored in a word pair, so one
could declare them fixed, with no loss in storage space. Doing this
results in the following counts:

Length of block with global interlock 236
Instructions due to strings - 57
Length of block with no strings 179

A third observation is that a surprising length of code was
required to compute a pointer into the active process table from an index
into the same table, viewed as an array. This was done twice here, as
well as elsewhere in the process exchange, and can be avoided by storing
the pointer in the process data segment after computing it once in
swap DBR. This redesign yields the following result:

Length of block with no strings 279
Extra instructions for pointer computation - 33
Length of respecified block 146

At this point, two bench mark experiments were made. The
first was to write a transliteration of the respecified block in MAD for
the 7094, using COMMON in place of EXTERNAL, and a number of similar
transformations. The second experiment was to write a version of the
respecified block in EPLBSA using all tricks available to make the pro-
gram as short as possible. These two coding efforts compare with the
EPL program as follows:

Respecified block in EPL 146
Respecified block in MAD (7094%) 136

Respecified block in hand coded EPLBSA 53



F. J. Corbatd and C. T. Clingen
Page 3
January 29, 1968

One may conclude from these figures that the EPL compiler is not doing
such a bad job on this particular program.

Finally, an instruction-by-instruction comparison between
the EPLBSA program produced by EPL and the EPLBSA program produced by
hand was made, to identify what it was that the compiler found difficult
or awkward to compile efficiently. The following table summarizes the
apparent sources of the 93 'extra' instructions inserted by EPL.

Unneeded garbage, never executed 5
Unneeded set up on calls with no arguments 4
Reloading of an already loaded register 14
Didn't save ap, had to reload 2
Sloppy use of base registers 4
Lack of access to RMSK, SMSK, STAC instructions 34
Didn't use clever 645 instruction in special case 8
Didn't optimally reorder comparison 1
Extra transfers 5
External calls to internal subroutines 13
Used a subroutine for the save sequence 3

93

Interpretation of this last set of data is difficult, since
it represents a rather small sample. One point is suggested by the
data, however: the Traffic Controller may be significantly slowed
down by need to perform many external subroutine calls to get at
special hardware instructions. (In fact, the hand-coded EPLBSA program
does more than the EPL-coded program, since it actually executes the
instruction in question, while the EPL-coded version merely calls the
procedure, which must go through further fol-de-rol to untangle the
calling sequence before executing the special instruction.)

As a purely practical matter, this observation suggests a
further respecification of block: the setting of the global interlock
and associated processor interrupt mask should be done in the EPLBSA
stack switching interlude procedure which calls block. (Argument
copying to wired-down core must also be done there.) This redesign
removes 16 needed instructions from both our EPL-produced and our hand
produced program, as well as the 34 extras in the EPL version, leaving
us with

EPL procedure without interlock, mask setting,

or argument copying 146 - 50 = 96

EPLBSA hand-coded to same specs 53 - 16 37



F. J. Corbatd and C. T. Clingen
Page 4
January 29, 1968

Overall, there is the impression that the remainder of the
program has been "nickled and dimed" to death, and that there are no
spectacular simple performance improvers to suggest for the compiler.
It does appear that performance of the compiler is now sufficiently
good that simple register optimization has become a significant issue.
Between reloading already loaded registers, not saving the argument
pointer, and not using base registers most effectively, 20 instructions
were added to what could be a 37 instruction program. This statistic
suggests that ultimately register optimization will be quite important.
On the other hand in the present situation, with other extras being
inserted from a variety of sources, the effect is that 20 out of 96
instructions were the result of lack of optimization of register usage.
Thus the immediate effect of the lack of register optimization is only
moderate, especially since squeezing all 20 of the extra instructions
out may be difficult or impossible.

If one were so confident as to hazard the prediction that
similar results hold for the entire Traffic Controller, one would
expect to find that redesigns of the original EPL program to optimize
use of the present compiler could drop the size, and therefore the
running time, to about 40 per cent of their present values, as it did
for block. Further reduction of about a factor three is potentially
possible by moving completely to machine language. These two effects
combine to bring the present 10 ms. round trip time down into the area
of 1.5 ms. After making allowance for the possibility that the block
module is somehow more susceptible to optimization than the rest, one
might still assume that the figure of 2,0 ms. is an upper bound on the
intrinsic computation requirements of the traffic control modules.




