MPL-40
October 14, 1969

T0: Distribution

" SUBJECT: | System performance effects of the new PLIIVcompiler |

FROM: F. J. Corbatd
To determine the impact of the ﬁew'PL/I compiler, a study has béeh madé;
with the procedure 'get calendar”. In particular, a‘sequence o? evoiu-
tionary steps were evaluated starting from: :
Case l,epl: A circa 1967 version of geq_calenda; (1-1/% scp
| source-coded-pages)) which along with its Eompanion,
calendar_output, waé'éoded in a casual EPL;style
with strong use of the substr functiqn. TLo entry
points were implemented, brief and full,’bbth perv.rlv
forming functions with rather baroque specs. External
calls were made to: calendar output (2 scp) and'biq_dec;f:’
s sep). | |
:;casé l.pal: geq_calendar, calendar_output and bin dec were all
given minimum modifications to become pgpl compilable;“‘
Changes were: |
get_ calendar: ; - insertion of "returns()" arpun&
- a return argument deélaratiqn.
1 - change of the "/" operator to thé

"divide” function,

s e s

. Page 2

1 - Correction of a latent bug
present in the EPL coded ver-
sion which caused the procedure
results to be stored outside
the area of the return argument,

- This bug went undetected pre-
viously because the EPL run-
time stglng-operator sub-
routine.has a compensating side-
effect, Use of PL/I revealed -

| , | ‘ the problem and forced a correc-
tion,
calendar_output: 13 - changes of the '"/" operator
— to the "divide" function
1 - insertion of explicit "fixed"
. , o and '"float" functions to avoid

a temporary compiler bug,

bin_dec: 1 - change of the '"/" operator to

the "divide" function.

The elerical changes could all have been made with two compilations since the
p4l compiler gave thorough diagnostics. (Several compiler bugs and °
temporary limitations were also encountered along the way. This class of
bugs, however, is not considered significant since not only is the number

of such bugs finite but they should be quickly discovered and eliminated

with normal use.)

Page 3

Case 2,epl:

Case 2.pgl:

Case 3.p4l:

The specifications of get calendar$brief were changed
and streamlined to support most previous uses of the
entry and yet allow simpler coding of the procedure.

(The "full" entry point was abandoned.,) The new

coding style was "1969 restricted EPL". External

calls were avoided and especially the use of the
string operator subroutines,
The version of get calendar prepared for Case 2,epl
was minimally modified. Changes were:
6 - changes of the '"/" operator to the "divide'" function.
4 - additions of explicit aligned/unaligned attri-
butes té keep the same array packing rules.as EPL,
A new version of get calendar was coded taking advan-
tage of PL/I features and sérengths of the new com-
piler. The specs were the same as for Case 2. The
principal changes were use of '"initial" declaration
to initialize internal static and straightforward

use of the '"substr'" function.

The running time of the above programs was determined by repeatedly calling

them in a tight loop and noting the minimum execution time. These results

along with the procedure sizes are given below in Table 1. (Size figures

are decimal; the first portion is the text, the second the linkage.)

Page &

case

Table 1

epl

pil

1
(get_calendar)

59.3 ms., 1329 + 88 wds.

17.6 ms,, 718 + 52 wds.

(calendar_output) 676 + 36 432 + 36
(bin_dec) 260 + 20 153 + 20
Total: 59.3 ms., 2265 + 144 wds, 17.6 ms,,1303 + 108 wds.,
t 2 6.2 ms., 666 + 54 wds, 6.6 ms., 453 + 50 wds,
3

3.0 ms., 474 + 52 wds,

Notes: 1. The execution time of case 2.pgl is expected to improve some=-

generated by the PL/I compiler.

what as further improvements are made in the object code

| 2, The execution time of case 2,p4l was increased by .6 ms., when

explicit aligned and unaligned attributes were not added in

converting from case 2.epl

Conclusions

Several observations can be drawn from the above results:

l. For a given procedure the PL/I compiler (compared to the EPL

compiler) will reduce the amount of text produced to about

2/3; linkage will essentially rewain the same size unless

specifications or organization of the procedure are changed,

2. Changes in execution time are more variable: Case l.epl

(1967 EPL) to Case l.pgl improvement was a factor of 3; Case

2.epl (REPL coded) to Case 2.pgl produced negligible changes

Page 5

4,

in execution time. A reasonable conclusion is that the PL/I
version of a procedure will never be significantly slower
than and will usually be faster than the EPL version.
Although straightforward brute-force recompilation of the
Multics system is conceivable, there is careful editing and
review required to check for subtle issues such as equiva-
lence of array packing, the effective use of label arrays

in computed-go-to statements, etc. Also at fifst, there will
be residual compiler bugs and a lack of familiarity among
programmers with the new compiler properties. One can conclude
that the system recompilation should be done area-by-area
until confidence is built up. |

Because the effect of changes in coding tactics or general
organization can have larger impact than changing compilers,
it would appear adviseable to accompany general system |
recompilation with an editorial review of each module as it
is converted,

Finally from the examplés which have been given it is obvious
that the introduction of the pg4l compiler has the poténtial
for space and time improvements which could easily lead to a

factor of 2 in system performance, -

