November 24, 1969

MPLe43
To: Multics Performance Log
From: J. H. Saltzer

Subject: Comparison of Compile Time, Run Time and Size of a Small
Program Using BASIC, FORTRAN, and PL/I.

A short FORTRAN subroutine which reads a number,,f , and then
computes and prints the (£ + 2)'nd prime was borrowed from the Multics
standard certifier script, and recoded in BASIC and PL/I. The three
versions were then compared on several points; the results are presented
here.

I. Source Programs

The two new language versions were coded to be as similar as possible
in algorithm to the original FORTRAN routine. The lack of a modulo function
in BASIC was bypassed by a direct computation using the integer function;
this change being in the innermost loop may have affected execution time
performance described in Section II.

The three source programs are listed for comparison in Figure I.

II. Execution Time

Each program was executed several times each, with input values of
5, 20, 40, 90, and 175. The input lines to both the command interpreter
and the program itself were queued. 1In order to distinguish page fault
time from pure execution time, each command was queued two or more times,
in an attempt to drive the number of page-faults to zero on second and
later executions. Each experiment was repeated several times, and the
smallest cpu time observed was recorded, in an attempt to minimize the
effect of interrupts whose execution time is currently charged to the
executing process. The results are shown in Figure III. In general, this
graph suggests that the execution time of the three object programs is
in the ratio 1:2:3 for FORTRAN, PL/I, and BASIC, respectively. Note that
with input value 175, the required execution time of all three programs
solidly swamps out the end effects of program starting and input/output
statements, and even of BASIC compilation time.

The difference in execution time of FORTRAN and PL/I appeared worth
further study, so the object programs were compared in detail. Figure IV
and V exhibit the two object programs. In terms of the physical program

-2-

Comparison of source program listings:

fpin. fortran

subroutine fpm
read(5,70) 1
70 format(i3)

m = 1

do 10 i = 3,100000

k = i-1

do 20 j = 2,k
if(mod(i,j)) 2u,10,20
20 continue

m = m+l

if(m=1) 10,40,40
10 continue
LO write(u,60) m,i
b0 format(7h Prime ,il4,3h is,ib)
return
end

pm.pll

pin: procedure;
declare (n,i,k,j,1) fixed binary;
call read_list_(1);

n=1,;
do i =3 to 100000;
k=i - 1;

~ 4
do j = 2 to k;

if mod(i,j) = 0 then go to 1190;

210

end

1160: end;
nm o= n+l;
if m>= 1 then go to 1200;
1190: end;
1200: call ioa_("prime °d is ~d", m, i);
end;
pm.basic
100 input 1
110 let i1 =1
1206 for i = 3 to 100000
130 let k =i -1
140 for j = 2 to k
150 if (i = int(i/j)*j) then 190
loU next
170 let mm = m + 1
180 if m >= 1 then 200
190 next i
200 print "prine'";m;"is";i

l/a4/eq

Tl. Queuing of command input to obtain zero-page-fault case:

basic pm

20

basic pm

20

basic pm

Compile time in ms. = 308, Page waits = 21
11/21/69 23:07

? PRIME 20 1S 71

r 2307 1.178 67

Compile time in ms. = 193, Page waits = 0
117217069 23:07

? PRIME 20 IS 71

r 2307 .611 o

N a— p3indwmer S 3w d wv voywa |
Sl , o
= - '
...... \\ - ,\\\\\\,\
- T -~ T o.-
e - ’ 4 \ -t
L - 7
\ _ o [
o \ T Oan
T 4
S\.a;*lrou \\\‘\\ \\ Ve ot - I
X\ \\\\ o \
‘ P 1L Q%
\\\K
/ T
| L oh
X . /
\\\
S . T
e /7
- S |
f~\ \lu Q \ p + o.w
R.\. /
/
3~ O.J
’
s T Q.r
\ -
(N9) 773.\/?\ e
.!37,.. wnk p g -T o;v
. /
S ’ AJ\“ ™ o. T e
L 0 AYA
“ /7 VN ywo ¥ Ao neim ,ié%ﬁs\@ i @ aNN u&s,\/.. r:d. { Mws.é.%,a
Cusvg (S #p by (| | | T
L/

Multics Performance Log -5~ November 24, 1969

sizes, the reason for the difference in execution time is clear. The
inner and outer program loops measure out as follows:

FORTRAN PL/I
Inner loop 11 instructions 14 inst. + 5 in subroutine = 19
Outer loop 22 instructions 39 inst. (includihg subroutine

Upon inspecting the compiled code, the difference seems to be primarily
that FORTRAN is very good on register optimization, while PL/I largely
ignores the subject. Compare also the FORTRAN compiled "AOS'" on line 152,
compared with the PL/I sequence starting at 73, both for the statement

"m =m + 1'". It appears that FORTRAN misses few tricks.

III. Compile Time

The compile times were compared, using a similar command stacking
technique to get the compiler '"in core' and minimize the effect of
missing page faults. It was found to be impossible to bring the number
of page faults to zero when using PL/I as the compiler apparently does
not fit into the available (~~160K) core. Results were as follows,
in both cases after linking had been accomplished by an earlier command.

Compile Page

Time/sec. Faults
FORTRAN 1.720 0
PL/I 4,698 170
BASIC .500 (est.) 0

The BASIC compile time is estimated from the lower asymptote of its
compile-and-execute curve in Figure III.

IV. Working Set Size

Each program was compiled following a '"flush" command, and then
executed (with input value 5) following a 'flush" command. The experi-
ment was repeated several times to insure that other users had not
distorted the result. The following table indicates the number of
missing-page faults observed.

TY. Compilation of source lines 4-12 by FORTRAN:

1 /2y/eq

STATEMENT BEGINNING ON LINE # 4
100131 000001236007 000000 LDQ =0000001,DL
00132 000001756100 000000 STQ AP/m
200133 000003236007 000000 LDQ 000003,0L
000134 R20037 NULL
700134 000002756100 000020 STQ AP/4, ~
STATEMENT BEGINNING ON LINE # 6
2700135 000001176007 000000 SBQ =0000001,DL
700136 000004756100 000090 SToQ AP/k
100137 000002236007 000020 LDQ 000002,0L
000140 AD0063 NULL
200140 000005756100 000000 STQ AP/4 -]
STATEMENT BEGINNING ON LINE # 8 I
700141 000002236100 000000 LDQ AP/i]
200142 000005506100 000000 DIV AP/)
700143 000044773000 000000 LRL 00004y i
200144 000000600000 200020 TZE AOO 14 .
000145 A20105 NULL .
700145 000005236100 000000 LDQ AP/4 °
100146 000001036007 000000 ADLQ 000001,0L {eo
100147 000004116100 000000 cMpQ AP/k]
00150 000140600000 200000 TZE A00063 A
200151 000140602000 200000 TNC A00063
STATEMENT BEGINNING ON LINE # 10
700152 000001054100 000000 AOS AP/m
STATEMENT BEGINNING ON LINE # 11
700153 000001236100 000000 LDQ AP/m
700154 000003176100 000000 SBQ AP/1
N00155 000000605000 200000 TPL A00156
000156 Ad0144 NULL
200156 000002236100 000000 LDQ AP/%
700157 000001036007 000000 ADLQ 200001,0L
00160 303241116007 000000 CMPQ 303241,0L
700161 000134602000 200000 _TNC AD0037
- 000162 A90155 NULL

‘r‘—"¢°

o oo

¢0J20386
003037

cO0o0u40
602041
coo0u2
€od043
codouy
02045

00046
000047
000050

00051
€02052
053
L. 20354
000055
C0d056
02057
€000%0

C0J20A1
0000582
002053
000054
€0J2055
60J056

00087
€00070
c00n71
000072

000073
G00074
002075

003076
€0d2077

09120
R

121

0002122
€00123
02104
-+000125

Y. Compilation of source lines 4-12 by PL/I:
WY
STATEMENT 1 ON LINE
aa 6 00124 7561 023 stq spliBy
STATEMENT 1 ON LINE
aa 777747 2360 04 1iq =25,1c 000007 = 000000000003
aa 6 00125 7561 02 stq spl85
aa 6 00125 2361 09 “liq spl85 .
aa 777745 1160 0% cnpy «27,.4c 000010 = 000000303240
aa 000002 6000 0% tze 2,1¢c 000046
aa 000041 6050 0% tol 33,1c 000106
STATEMENT 1 ON LINE
aa 6 00125 2361 09 lig spl85
aa 777734 1760 0% shq ~36sicC 000003 = 000000000001
aa 6 00126 7561 0) stq sp|86
o STATEMENT 1 ON LINE
aa 6 00126 2361 09 1liq sp|36 b
aa 6 00131 7561 939 sta spl89 e
aa 777736 2360 04 liq =34,1ic v 000011 = 000000000002
aa 6 00127 7561 09 stq spl87
aa 6 00127 2361 03 liq spi87 — L
aa 6 00131 1161 09 cnpy spl89 4
aa 000002 6000 04 tze 2,1ic P 000061
aa 000013 6050 04 tol 11,12 1 000073
STATEMENT 1 ON LINE
aa 6 00125 2361 09 liq SplIB5 [w -
aa 6 00127 3521 9)? eapbp 8p187 |[w £ wrtrection
aa O 00704 6701 03 tsblp aplius2fe mod_£x1 S b rauting
aa 777716 1160 04 cmpg =50,ic|w 000002 = 000000000000
aa 000002 6010 04 tnz. 2,1z 000067
aa 000014 7100 04 tra 12,1c L 000102
° STATEMENT 1 ON LINE
aa 6 00127 2361 03 liq spl87 | ¢
aa 777713 0760 04 aiq =53,ic| ¢ 000003 = 000000000001
aa 6 00127 7561 09 stq spl87
aa 777763 7100 0% tra '»1‘3aj.<:--l 000055
STATEMENT 1 ON LINE
aa 6 00124 2361 09 lig spl8y
aa 777707 0760 0% aigq =57,1c 000003 = 000000000001
aa 6 00124 7561 03 stq spl84
STATEMENT 1 ON LINE
aa 6 00124 2361 09 liq sp|84
aa 6 00130 1161 02 cnp3 sp|88
aa 000002 6040 04 tni 2,12 000102
aa 000005 7100 04 tra 5,1¢c 000106
STATEMENT 1 ON LINE
aa 6 00125 2361 09 liq spl85
aa 777700 0760 04 aiq =64,1ic 000003 = 000000000001
aa 6 00125 75641 09 stq sp|85 "
aa 777735 7100 04 tra =35sic — 000042

-7-

10

11

12

Multics Performance Log -8- November 24, 1969

Compile Run
e
BASIC 74
TN ~
FORTRAN 105 15
PL/I 225 27

Note that the PL/I compiler taken only a few more page faults when it
follows '"flush" than when it follows itself. The unusually large number
of pages required to execute the PL/I object program suggested further
analysis. Figure VI shows a page trace of the PL/I program. Most of the
trouble clearly arose from the use of subroutine '"read list_'" for input,
since that subroutine call resulted in 12 distinct page faults. It also
appears that in system 4.7f, segment 'p/l-operators is not yet wired-down.

A second fact uncovered by the page trace is that segment 110, the
Teletype DIM (bound-tty-active) is organized so that all six of its pages
are touched by a write and read call. In earlier systems, this segment
was ''optimally bound'" such that only three pages were touched. A review
of the contents of bound-tty-active suggests that such a reordering ot
its components could again reduce the number of pages touched to three.

V1 . Page fault trace of PL/I object program execution following

nE-

/MSQC.

a "flush" command:

19/23/69

meter_start;flush

measurerient
pra 5

5
meter_stop

r 819 2,504

Ready
prime 5
r 819

.322

measurenent

r 6§19 .0Y38 b
print_pages 35
186960668625 0

18090b06L3303
lTovuiLhooliby 1

lobybbou/iv 51
-

160bY6LO2098 TBBBHwWPcGZQDDx

0 phes_.1link

started

293
for 1 value
is 11

(27~

stopped

Page #

_ £
[et R e (L

000124

wmelet - S*bv

towmwm s
neter_start
VBEBHaPcGLGLD X

5 |
15696359160 3 read_list_ \\ |
1806963238938 0 free_ 1
18696286736 0 bin_oct | 1R e
8696250114 0 read_list_ 4 Arouckerd
180961920060 4 read_list_ Ty
136901094067 2 read_list_ - ‘
180696031631 G write_out —| Yeod list—-
18090006734 11 !BBBHWrPcGZQDU X~
150695970285 2 stack_01 — i
186959552067 1 stack_01 - D] g
180LY5923550 3 stack_ul —_ /
18695839472 1 read_list_ — U chrag!
13645803045 1 pll_operators'&vw*wwed»m%3
18095770729 U pll_operators
186060212080 0 BR
18695598870 32 !BBBHwWPcGZQDDX
18695567624 6 060110 —
16695546726 U 000110 —
16695516733 3 U0Ul1ly —
1609547598 1 000US53 T B
18695432839 2 (000110 —|
18695384456 0 voull2 |
18695345641 5 06060110 1
18695319802 4 000110 —
locibl2osuby L Uulule
160952000106 1 listen_ “"'—TT__—J—
13605217260 1 hes_.TInk $ Toul ew
18695180876 0 000120 o flush
18995155&33 0 proces§_info Cowm s o
18695135919 0 hes_.link
r 820 3.227 (3

