MPL-50

To:

From:

Subject:

Date: .

1. Summary of Performance Measurement Results

Al

Sekino

Multics Performance Log

May 12, 1970

Results of Multics Performance Measurements
Effect of Core Size upon System Performance

The measurement runs, MPM96 through MPM103, were made in the following
It should be noted that the very important system parameters
such as the number of CPU's and the available core size were changed.
However, the number of eligible processes allowed in core at a time (=emax)

situations.

has been fixed at three.

new command loop were newly installed on the 7.0 system.

A fast page-fault handler (~~4 msec/page) and a

Run No. of Core of
Date No. System CPU s Size Users
3/24 MPM96 7.0 1 256 K words 21
3/25 MPM97 6.0 1 256 28
3/27 MPM98 6.0 1 384 28
3/29 MPM99 7.0a 1 256 8~9
3/30 MPM100 7.0a 1 256 21
4/2 MPM101 7.1b 2 384 23
5/4 MPM102 7.3b 1 384 27
5/7 MPM103 7.3b 1 256 27

The measurement results of the above runs are summarized in the following

table.

MPL-50 | -2- May 12, 1970

TABLE 1
Time unit = second
Average = per interaction
Total Total Total Average Average Average
Run CPU No. of Real CPU No. of Response
No. Time P.F. Time Time P.F. Time
MPM96 31.815 3495 2322 .482 52% 6.2
MPM97 48.839 2839 2416 .739 43 9.3
MPM98 37.915 1879 2293 .575 28 5.4
MPM99 23.644 2089 2155 .358 31 2,2
MPM100 | 28.721 3013 2298 436 45 5.2
MPMlOf“ 26.859 1868 2216 .407 28 2.9
MPM102 | 25.749 1703 2248 .390 25 4.1
MPM103 | 31.340 2771 2425 | 474 41 9.6

* The number of missing page faults was found to be larger than usual because
of a bug in the supervisor of a newly installed 7.0 system.

% The performance of a 2 CPU, 384 K system measured in MPM10l was analyzed
and reported by J.H. Saltzer in MPL-49.

*%% The installation of a fast page-fault handler resulted in a shorter mean
time between page faults but the number of missing page faults seen by the
script did not change significantly.

MPL-50 -3- May 12, 1970

2. Effect of Core Size upon System Performance

The comparison between MPM97 and MPM98 of the 6.0 system and the comparison
between MPM102 and MPM103 of the 7.3b system enable us to see an effect of
core size upon the system performance.

6.0 System (28 users, 1 CPU)
TABLE 11
|
Run Core MTBPF (msec) Average | IO Capacity | CPU Idle Time
;o Size depth No. of %) - (%)

: (Kwords) 1 2 3 P. F. Drum DS270 | 1 2 3 Total
MPM97 256 22 21 16 43 12 30 14 O 0 14
MPM98 384 44 32 24 28 7 22 6 2 3 11
7.3b_System (27 users, 1CPU)

TABLE III
MPM103 256 21 18 12 41 12 29 22 0 O 21
MPM102 384 39 30 19 25 6 19 6 8 17 31

The CPU idle time 1, 2, and 3 of the above tables respectively denote the
multi-programming idle time, the non-multiprogramming idle time, and the
zero idle time. Several observations may be made from the statistics of
Table I, II, and III.

1. By increasing the core size from 256Kwords to 384Kwords, the mean
time between page faults (MTBPF) has almost doubled (1.5 ~2 times).
The average number of page faults per interaction seen by the Fortran
script user has reduced to 61~65%.

2. The resulting decrease in page traffic is observed in the I/O rate;
the decrease in drum traffic is 40 ~507% and that in disk traffic is

about 307%.

=4~ May 12, 1970

The multi-programming idle time, which can be almost accurately
predicted from the MTBPF's by a mathematical model, has drastically
decreased. Furthermore, it is seen that the 384K system is no
longer under a full load when there are 27~ 28 simultaneous users.

The effect on CPU usage may be easily predicted assuming a constant
page-fault handling time (-~ 8 msec. for the 6.0 system and ~4
msec. for the 7.3b system). The decrease in CPU usage of the
Fortran script user was experimentally found to be 227 on the 6.0
system and 18% on the 7.3b system.

The effect on the system response time is particularly immense,

as shown in Table I. However, this 507% decrease in the average
response time mainly comes from the decrease in the exceptionally
long response time of the '"fortran' command. The 256K system under
a 27 ~28 user load spent a 45~~86 second response time with about
260 missing page faults for a simple Fortran compilation, while the
384K system under the same load spent a 6 ~27 second response time
with 118 ~214 missing page faults for the same compilation. The
big difference between these two response times is due to the
difference in the degree of satulation of each system and in the
number of induced missing page faults on each system. This observa-
tion suggests that the pre-paging and post-purging technique could
drastically improve the system response time of the heavier commands
if this technique will be properly installed.

3. Effect of the Other Processor

It seems that a very drastical performance improvement such as the one
discussed in 2 cannot be expected by simply adding another processor to the
system because of the interference for access to core memory, as pointed out
also in MPL-49. This means that each user's CPU usage will increase because

of the core interference and the increased paging traffic but that the system
response time to each user will be slightly improved because of the increased

computational capability of the dual-processor system. This tendency was
actually found in the results of MPM102 and MPM101l.

