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TO: Multics Performance Log
FROM: M. Schroeder '
DATE: June 25, 1970

SUBJECT: Analysis of 645 CPU Associative Memory Operation and
Discussion of Alternative Associative Memory Designg

Introduction

The preceding report in this series, MPL-51, documents the results of several
measurements of the 645 CPU with electronic counters. The primary purpose of
these measurements was to determine the effectiveness of the associative
memory (AM) for SDWs and PIWs that is part of a 645 CPU, The AM prevents

the appending cycle of the CPU from slowing the GPU's instruction execution
rate in proportion to the product of the memory cycle time and number of

SDWs and PTWs referenced, by remembering in flip-flop register copies of

the 16 most recently used SDWs and/or PIWs. It is the purpose of this

report to analyze the results documented in MPL-51, and to derive from those
results alternative AM designs The alternatives include a simple change

(two wires) to the 645 AM to improve perforhance, and two AM designs for the
follow-bn processor to thé 645 CPU, In addition, the results of several

previously unreported measurements are given,

This report is organized in four sections. The first describes in some
detail the operation of the current AM, This provides necessary background
informati on for understanding the performance analysis presented in the
second section. Following that, the results of several experiments in which
the number of AM registers were varied are presented. Finally; these results

and the analysis are applied to derive alternative AM designs.

Operation of current AM

The current AM consists of 16 flip-flop registers of 60 bits and some control
logic. Each associative register (AR) may contain a copy of an SDW or a PTW,
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as well as tags which identify the segment, or tlie segment and page,
associated with the contained SDW or PTW, respectively. Figures 1 and 2

present the formats of an AR for these two cases.

AM search cycle -- Each time the CPU enters an appending cycle (to per-
form a virtual memory reference for a pair of instructions, an indirect

pair, or an operand) the AM is searched to determine if it contains a copy

of the SDW or PIW which is needed, The input to the search is the segment number

and word number address of the item being referenced and a flag indicating
wﬁether or not the reference will be a write or a read/alter/rewrite. The

gearch proceeds in up to three passes,

In PASS1 (216ns) the contents of every AR whose Empty/Full bit is "1" and
whose segment number matches that given are ORed together., Because the
values of bits 27, 28 are always the same for all valid AR's with the same
segment number tag, if one or more segment number matches occur it is
possible to determine from the ORed result whether or not the segment is
paged and the page or block size (see Figure 1), Three results of PASS1
are possible:
1.9 No segment number match occurred. In this case the AM contains
no useful SDW or PTW and all appending words will have to be re-
trieved from memory.
1.1 A segment number match occurred, and bit 28 indicates the segment
is not paged. 1In thiscase the ORed search output must be the
contents of the single AR containing the SDW for the non-paged
segment, No further appending words are required.
1.2 A segment number match occurred, and bit 28 indicates the segment
is paged. In this case the ORed search output may be the result
of more than one segment number match (ARs containing both the SDW
and PIWs for the segment will match), Bit 29 will indicate large or
small pages properly, and bit 18 will be "1" if and only if the match
set includes the SDW, but all other bits of the ORed result may be

meaningless. A more selective search is thus required.
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Address 1| Boundary| Desc. Segment number FA| UC
o ‘ 18 27 3¢ 53  5¢ 59

| Address field -- Address from the SDW. Contains the quotlent mod 64
of the base address of the segment.

Bit 18 -- Always '"1". This is the flag that indicates the AR contains
an SDW (instead of a PTW).

Boundary field -- Size field from the SDW. Contains the total number
of pages in the segment if it is paged, or the number of blocks in
the segment if it is not paged.

Descriptor field -- Descriptor field from the SDW. SDWs with bit 32 set
to "1" are not put in the AM, so bit 32 is always "0'". A specifi-
cation of each bit follows:

27 if a "1" the segment consists of 64 word pages or blocks
if a "0" the segment consists of 1024 word pages or blocks
28 if a "1" the segment is not paged
if a "0" the segment is paged
29 not used
30 if a "1" the segment may be written
if a "0" the segment may not be written
31 if a "1" the segment may be accessed in both Master and Slave mode
if a "0" the segment may be accessed in Master mode only
32 always '"0"
33-35 class code from the SDW. Allowed values are:
001 Data
011 Procedure only
010 Procedure Slave
100 Procedure Master

Segment number field -- Contains the segment number associated with the SDW.

Full/Empty bit -- Internal control bit:
if a "1" the information in this AR is valid
if a "0" the information in this AR is not valid

Adjust usage counter bit -- Internal control bit. Whenever it is "1" the
usage counter for this AR will be decremented by 1 on an adjust usage
counters cycle.

Usage counter field -- Records the order of most recent use for the ARs. The
most recently used AR has a usage counter value of '"1111" and the least
recently used AR has a usage counter value of "0000". Whenever a new
entry is added to the AM in is put in the AR with a usage counter value
of "0000".

Figure 1: Format of an AR that contains an SDW
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Address D| Page num, Desc. Segment number F Al UC
53 5¢ 59

(o} g 7 36

Address field -- Address from the PIW. Contains the quotient mod 64 of
the base absolute address of the page.

Bit 18 -- Always "0". This is the flag that indicates the AR contains
a PTW (instead of an SDW).

Page number field -- Contains the page number associated with the PTW.

Descriptor field -- All bits in the field have the same meaning as for an
SDW except bit 29. The descriptor contained in this field is generated
from both the SDW and PIW descriptors as indicated below:

27 copy of bit 27 of SDW descriptor

28 copy of bit 28 of SDW descriptor

29 the modified bit. Initially contains a copy of bit 26 of the PTW.
If this is "0" then it will be set to "1'" when the page is
modified (as will bit 26 of the PTW in memory) .

30 set from the AND of the corresponding bit in the SDW and PTW
descriptors

31 set from the AND of the corresponding bit in the SDW and PTW
descriptors

32 always "0"

33-35 set to match the most restrictive of the class codes from the
descriptor in the SDW and the PTIW.

Segment number field -- Contains the segment number associated with the PTW.
Full/Empty bit -- Same as for an AR containing an SDW.
Adjust usage counter bit -- Same as for an AR containing an SDW.

Usage counter -- Same as for an AR containing an SDW.

Figure 2: Format of an AR that contains a PIW
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1f result 1.2 (above) occurs, then the PASS2 search (234ns) is necessary.

Tais is a search for the PTW required (it is not necessarily in the AM),

To match on this pass an AR must have the Empty/Full bit set to "l1", must

match the given segment number, and must match the page number which is

derived from the given word number and bit 28 of the PASS1 result., (Note:

it is necessary to know whether large or small pages are the case before

the page number can be derived.) At most one AR can match., Two results

of PASS2 are possible:

2,0 A match occurs. The search result must be the needed PTW, No fur-
ther appending words are required as the matching AR contains the
relevant description information derived from both the PIW and the
SDW of the containing segment,

2.1 No match occurs, The needed PIW is not in the AM, All may not be lost,
however. If bit 18 of the PASSl search result was '"l'", then the needed
SDW must be contained in some AR, PASS3 is initiated to find it.

If bit 18 was 0", :then all appending words will have to be retrieved

from memory.

The PASS3 search (216ns) follows result 2,1 (above) whenever bit 18 of the
PASS1 search result was'l" (indicating the SDW is somewhere in the AM), To
match on this pass an AR must have the Empty/Full bit set to "1", must con-
tain the given segment number, and must have bit 18 set to '"l", A match

must occur, After the search is completed, the final appending word (the PTIW)
must be retrieved from memory.

Before describing the relation of the various search results to the rest of
the appending cycle inmore detail, it is useful to consider the AM clear,

write, read, and adjust usage counter cycles.

AM clear cycle -- The clear cycle is used to empty the AM, It occurs as a
result of executing an LDBR or a CAM instruction. Clearing is accomplished
by unconditionally setting the Empty/Full bit in all 16 ARs to '0", The

usage counter of the 16 ARs are unconditionally set with the 16 values
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000" through "1111", a different value being placed in each AR, Note that

inmediately after a clear cycle no search of the AM can find a match,

AM write cycle -- The empty AM which results from a clear cycle is of no
use to the appendihg\cycle. SDWs and PTWs must be written into ARs where
they can Subsequent1y=be found on a search cycle. Each time an unfaulted
SDW or a PTW is retrieved from memory during a normal appending cycle, a
copy is written into the AM, 1In the case of an SDW the relevant SDW fields
(see Figure 1) are presented ummodified to the AM write cycle, along with
the segment number, These are written into the AR with a usage count of
"0000", and bits 18 and 54 of the AR are set to "1, In the case of a

PTW, a descriptor is generated from the SDW and PIW descriptors as implied
by Figure 2, and the relevant PTW fields thus modified are presented to the
AM write cycle, along with the segment number and the page number. These
are written into the AR with a usage count of "0000", bit 18 of the

AR is set to "O", and bit 54 to "l". An adjust usage counters cycle

always immediately follows a write cycle,

AM read cycle -- If the relevant SDW or PIW is found in an AR during a
search cycle, the read cycle is entered. Bits 0-35 of that AR are placed
on the data line to the rest of the appending cycle. An adjust usage

counters cycle always immediately follows a read cycle,

Ad just usage counters cycle -- This cycle is entered immediately after a
read or write cycle. The effect is to set the usage counter in the AR read
or written to "1111", and to decrement by 1 the usage counters of all ARs
whose usage counter values were greater than the original value in that AR,
The cycle is implemented by associating a 4-bit subtractor/comparator with
each AR, All usage counters are updated simultaneously. Note that this
maintdins the least recently used replacement descipline in the AM, The
first 16 write cycles after a clear will fill up all 16 ARs. After this
the AR containing the SDW or PIW that has gone the longest without being

used will be overwritten by a new entry.
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Relation of AM‘;o rest of appénding cycle -- Figure 3 is a flow diagram

of the entire appending cyle, including the AM, The center column of
Figure 3a shows the three passes of the AM search discussed above, and the
read and adjust usage counters (AUC) cycles which occur after an SDW or
PIW is found. Figure 3b details the branch logic which follows PASS1

and PASS2, The various paths out of the AM search are labeled with the
name of CPU logic lines for reference later, These labels can be ig-

nored now, as can the references to the modified bit in Figure 3b,

On the right side of Figure 3a the rest of the appending cycle appears,
In order to understand this portion, assume that PASS1l of the AM search
finds no matching ARs (result 1,0 described earlier)., This corresponds
to the path labeled '"QNIAl" leaving the branch after PASS1l in Figure 3
(2 and b). For this result the entire appending cycle must be used, and

all appending words retrieved from memory.

Beginning at the top of the right column of Figure 3a, then, the descriptor
segment base register is checked to determine if the SDW needed is out-of-
bounds in the descriptor segment, If an out-of-bounds fault is not generated,
it is determined if the descriptor segment is paged, and if so the descriptor
segment PIW if read from memory with a RRS-SP memory cycle (1.20us). If the
DSPTW contains a directed fault, the fault logic is entered; otherwise the
addressed SDW is read from memory with a RRS-SP memory cycle. Note that

the DSPIW was not written into the AM, They are never saved in the AM, The
SDW is checked for a directed fault and (if none appears) an AM write cycle
followed by an adjust usage counters cycle is initiated to write the SDW
into the AM, Concurrently, if the SDW indicates a non-paged segment (left
branch), access privilege and bounds are checked against the SDW and

if no fault is generated, the final operand, indirect word, or instruction
reference is made to memory. If the SDW indicates a paged segment (down-
ward branch), a bounds check is made, and if no fault is generated, the

PIW is retrieved from memory with a RRS-SP memory cycle. The PTW is

checked for a directed fault, and if none occurs, the used and modified

bits in the PTW are updated if necessary. This is done in the following
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way: the new value for the used bit should be "1". The new value for the
modified bit should be "0" unless the old value is '"l" or a write or
read/alter/rewrite operation is to be performed, in which case it should

be "1". If the new values for the used and modified bits are not the

same as the old, then the PTIW in memory is updated with the new values by

a zone write to bits 24-26, Once this is taken care of, a descriptor is
generated by comparing the descriptors in the PTW and the previously re-
trieved SDW, and generating the result implied by Figure 2, (Note:

bit 29 in this descriptor will be set to "l" if the modified bit was or
became 'l" above.) Once this is done, the PTW with the modified des-
criptor is written into the AM and the usage counters adjusted, Concurrently,
access is checked against the generated descriptor, and if no fault results,

the final reference is made,

Now relax the assumption that no match occurred on PASS1 of the AM search.
As Figure 3a indicates, the various possible AM search results listed
earlier cause various subsequences of the full appending cycle to occur
(with the exception of the mysterious sequence on the far left of Figure
3a).

Referring to Figure 3b, the result 1,0 path (labeled QNIAL) has just been
explored, The result 1.1 path is labeled QSSFl in the PASS1 branch logic.
Recall that in this case a non-paged SDW is found in the AM, Following the
péth in Figure 3a, the SDW is read from the AM and the usage counters adjusted.
The append cycle is entered following this read just at the point where the
bounds and access in a non-paged SDW are checked. The SDW from the AM takes
the place of the SDW that would have been retrieved from memory. The result
1.2 path is labeled QSULLl or QSUSl, depending on whether the PASS1 output
indicated large or small pages, respectively, and leads to PASS2 of the

AM search.

Result 2.0 is labeled both QSSF1 and QWBCl in the PASS2 branch portion of
Figure 3b. The difference is subtle. It has to do with a special circum-
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stance which can occur. If the final operand reference is to be a write
or a read/alter/rewrite and if the modified flag (bit 29 of the matched AR)
in the PIW found by PASS2 is not yet "l", then both the copy of this flag
in the AM, and in the PIW in memory (bit 26 of the PIW)must be set to '"l".
This case is labeled QWBCl. 1If this does not occur; then the path labeled
QSSF1 is followed. The latter reads the PTW from the AM, adjusts the usage
counters and enters the appending cycle at the point where the descriptor
generated from an SDW and PIW is checked for access permission., The PIW
from the AM simply takes the place of the PTIW which would have been re-
trieved from memory. Since it already contains the generated descriptor,

no further information is needed.

The QWBCl path proceeds to the left-most column of Figure 3a, This is a
special appending cycle to locate the PTW in memory so its modified bit
(26) can be set to "l1" also., It is in every way the same as the portion
of the normal cycle shown parallel to it in the right column of Figure 3a
as far as the sixth step. Here, instead of putting the retrieved SDW in
the AM, the SDW is used to make a write reference to the proper PIW in
memory. The write is a zone write to bits 24-26 of the PIW which sets

the modified bit to "l1", A special AM cycle (SMB) is then entered which
sets the modified bit in the AR to "l". This path then rejoins the QSSF1
path,. The case of result 2.1 in which an SDW match did not occur in PASS1
is labeled QNIAl, and is handled the same way as result 1.0 (which has the
same label)., The other case of result 2,1 (an SDW was found on PASS1)

is labeled QSUPL and leads to PASS3 of the AM search.

 After PASS3, the found SDW is read from the AM, the usage counters

adjusted, and the appending cycle entered at the point where the bounds
check on a paged SDW is performed. The SDW from the AM takes the place

of the SDW that would have been retrieved from memory.

Observation -- This is probably a good point to note several observations
about the current 645 CPU AM, Clever advantage has been taken of the
shape of SDWs and PTWs to make efficient use of the storage space available.
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The address field in both is the same length, and completely overlaps.
Thus, it can occupy the same bits of an AR in either case. PIWs do not
contain a bound field, and since the bound field in an SDW specifies the
length of a segment only in units of a page, it is not necessary to copy
the SDW bound into an AR containing a PIW, (The fact that an unfaulted
PTW exists guarantees that the words in a page are within the bound for the
segment, ) Thus, the space in an AR which contains the bound field for an
SIW can contain the page number tag for a PIW, (Both fields require the same
number of bits.) Both SDWs and PIWs require segment number tags in their
ARs, so there is no problem here. All that remains is the descriptor

field in SDWs and PIWs, In the 645, the descriptors in PIWS are used in
the access check performed before each reference to a word in paged seg-
ment. The access check is made against a descriptor that is generated from
the descriptor fields in both the SDW and the PIW, It is thus necessary

to save a descriptor in an AR regardless of whether an SDW or PIW occupies
it. All three descriptors (SDW, PIW, and generated) are the same length,
All that is needed to be able to usé a PTW found in the AM even when the
corresponding SDW is not there is to save the generated descriptor in ARs
which contain PTWs rather than just a copy of the PIW descriptor. Finally,
the "used" bit from PTWs need not appear in ARs, The fact that a PIW is in
the AM implies that the 'used" bit is ",

The point of making these observations now is to allow some of them to be

contrasted later with the situation in the 645 follow-on CPU,

Performance of current AM with Multics running

In this section an analysis of the performance of the current 16 register
AM is presented. The analysis is based in part on the data presented in
MPL-51, and in part on additional data. All measurements were taken while
Multics was executing on a hardware configuration that included 1 CPU and
256K of core memory. See MPL-51 for a description of how the data was

obtained.
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Model for analysis -- The rather detailed description of the operation of
the AM presented in the first section of this MPL provides the basis for
interpreting the data collected. As a first step in this interpretation a
tabular summary of the possible results of an AM search is presented. This
will serve as a model for part of the analysis of the data. In Figure 3

the paths corresponding to the various search results were labeled with the
nanes of logic lines in the CPU, A pulse appears on the named line whenever
the indicated result occurs, The tablekin Figure 4 summarizes the correspon-
dence between the possible results and the pulses generated., The columns
correspond to the logic lines, and the rows to the possible search results,
An X'ed table entry indicates the occurrence of a pulse during a search
cycle, As can be seen, a combination of pulses is needed to identify

each result.

Pulse counts -- The average number of pulses per second observed on each of
these lines during the electronic counter measurements of the 645 CPU are
listed below. The counts of QSTAl and QNIAl were taken simultaneously.

The counts for the other four lines were taken one after another on another

day.
qstail 414,668/s
quratl 5,180/s
qsuL1? 194,209/s
qsus1> 1,059/s
qsue! 826/s
QssF1® 381, 088/s

Percentage of occurrence of search result s -- The measurement results

themselves do not indicate directly how the AM is being used., Of real inter-

est is the percentage of searches which produce each result indicated in Figure 4,

-

'reported in MPL-51

N

not previously reported, see Figure Al in the appendix
not previously reported, see Figure A2 in the appendix

B~ W

n?t previously reported, see Figure A3 in the appendix



MPL-52 Page 14 -

logic lines result

QSTALl QNIAl QSUL1 QSUSL QSUPl QSSF1
100 1.25 50.32 .27 .21 98.75

no segment number match from PASS1

X | X

only incorrect PIWs found on PASSZ,

X X X no SDW from PASS1, large pages
only incorrect PTIWs found on PASS2,
X X X no SDW from PASS1l, small pages
non-paged SDW found on PASS1
X X
o paged SDW found on PASS3, large pages
X X XX
, paged SDW found on PASS3, small pages_y
X X X X

correct PTW found on PASS2, large pages

correct PTW found on PASS2, small pages

X
>
P

large pages indicated by PASS1
small pages indicated by PASS1
no PTW match on PASS2, but SDW

start AM search

no useful match
match found on PASS1
some useful match

Figure 4: Correspondence between AM search results and pulses generated
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While it is apparent that this cannot be derived exactly from the available
data (the table has eight rows but only six columns, five of which are
linearly independent) a reasonable approximation can be made, The task is
further complicated by the fact that the data from the two different days
of measurement represented are inconsistent (QSSFl + QNIAl = QSTAl should
be true, but 381,088 + 5,180 # 414,668), This inconsistency can be
resolved by assuming that the percentage of occurrence of each result was

thie same for both sets of measurements.

To adjust the ﬁeasurements, start with QSTAl and QNIA 1 which were counted
simultaneously. QSTAl - QNIAl = QSSF1l, which means the QSSFl count for
that period was 409, 488 each second. This is 107.45 percent of the
measured count from the next day. So multiply the QSUS1, QSULl, QSUPl, and
QSSF1 counts by 1,0745, The adjusted counts and the percentage of total

searches per second each represents are:

QSTAl 494,668/s 100, 00
QNIAl 5,180/s 1.25
QSULL 208,678/s 50, 32
QSUsl 1,138/s .27
QSUP1 888/s .21
QSSF1 409,488/s 98.75

The adjusted percentages are listed at the head of the columns in Figure 4.

After observing that the data confirms the predominance of large pages
among paged segments (the only paged segment with small pages in Multics
is SCAS), things can be simplified by removing the large page/small page
distinction.. A new table is produced by merging columns QSULl and QSUSL.
The percentage of occurrence to associate with the merged column is the sum
of the percentages for the component columns because pulses never occur on

both lines on the same search cycle. The new table is shown in Figure 5,

The corrected data immediately indicates that the results represented by
rows 1 and 2 of Figure 5 together occur on 1,257 of the searches, and by
row 4 on .21% of the searches. The result represented by row 3 of Figure 5

must occur on & minimum of 48.16% of the searches, because an upper bound
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logic lines result

QSTA1 QNIA1l QSUS1 QSUP1 QSSF1

QSUL1
100 1.25 50.59 .21 98.75
, no segment number match from PASSI1
X | X
1.25 . .
only incorrect PTWs found on PASS2,
X x | X no SDW from PASS1
*48 16 - non-paged SDW found on PASS1
49.41 X
paged SDW found on PASS3
*
49.13 - correct PTW found on PASS2
50.38 X X X

1

\
~~——. percentage of occurance

*
must add together to give 98.54

Figure 5: Percentage of occurance of AM search results
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on percentage of occurrence for row 1 is 1.25%, and row 2, 4, and 5 together
totel 50.59%. The same result must occur on a maximum of 49,417 of the
searches, because a lower bound on percentage of occurrence for row 1 is 0%.
Adding to these upper and lower bounds for row 3 the values for row 1 +

row 2 and row4, the result represented by row 5 is seen to occuron between
49.13% and 50.38% of the searches. These bounds are summarized on the left

of Figure 5.

\

what comes out must have gone in -- Two more previously unreported measure-
ments are available. SDWs are written into the AM (using the write cycle
discussed in the first section) at an average rate of1 6,364/s. The similar
figure for PIWs for segments with large pages 132 3.158/8. ©No data is
available on PTWs for segments with small pages, but the pulse count for

the QSUS1 line discussed earlier suggests that the number of small PTWs
written into the AM per second is very low. Observe that these rates do not

account for all SDW and PTW references to memory. They include only SDWs

and PTIWs which are written into the AM. Not counted are DSPTWs (which are never

written into the AM), SDWs and PIWs which contain directed faults (which are
not written in the AM), and DSPTWs, SDWs, and PIWs referenced in connection

with mainfaining the used and modified bits in PTIWS.

Effect of number of AM registers on_performance

In this section the results of several experiments are considered in which

the number of ARs in the AM were varied. The full AM contains 16 ARs. An

AM with 8 ARs was obtained by wiring the high order bit of the usage counters
in 8 of the ARs to permanently contain the value "1". An AM with 4 ARs was
obtained by wiring the two high order bits of the usage counters in 12 of

the ARs to permanently contain the value "11". An AM with no ARs was obtained

by turning off the AM using a front panel switch on the CPU.

1 .
“see Figure A4 in the appendix

2see Figure A5 in the appendix
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Figure 6 shows the effect of the AM size changes on the rate of occurrence
of four events of interest: memory accesses/second, AM searches/second,
instruction executions/second, and AM 'not founds''/second (QNIAls)., All

data for Figure 6 was reported in MPL-51.

It is obvious from Figure 6 that the size of the AM has a direct effect on

the instruction execution rate of the CPU. All of the decrease in the
instruction exectuion rate which occurs as the size of the AM is decreased

is caused by the retrieval from memory of more and more SDWs and PIWs, Figure
7 illustrates this point quite well. The number of virtual memory references
(AM searches) per instruction remains constant as the size of the AM is
decreased, while the number of core memory references per instruction rises
dramatically. Both the ratio of core memory accesses to instruction excutions,
and the absolute instruction execution rate would be affected even more if
there were not so many non-paged segments in the ring O portion of the system.
From these measurements it appears that 16 was a good choice for the number of
ARs in the AM. While more ARs would certainly cause some further increase

in the instruction execution rate, the next readily available increment of

16 ARs does not appear to be a good buy. The first derivative of the
instruction execution rate with respect to the number of ARs is fairly close
to zero with the current size. An AM with 8 ARs is probably too small.

The instruction execution rate drops by 5.6% as the number of ARs decreases
from 16 to 8, which is significant. More importantly, with only 8 ARs, the
system would be more vunerable to changes which affect the size of the

average working set, e.g., a new Call-Save-Returns sequence which touched
more pages might push the average working set size just over 8 pages, thus

causing an 8 register AM to become too small.

Note, however, that the instruction execution rate curve in Figure 6 is not
flat at 16 ARs. This suggests that a little more performance might be
"squeezed-out" of the 645 CPU with a few more ARs. As indicated above, the
performance improvement expected is not great enough to justify doubling

the AM size. Moreover, this would be practically and economically impossible
to do on the current machine. There is a simple change that could be made

to a 645-CPU, however, which would have the effect of adding a few more ARs.
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As indicated in Figure 5, only .21% of all AM searches result in a match with
a paged SDW, while 98.547% of all AM searchers result in a match with a PTW

or a non-paged SDW (which is really a PTW for an arbitrarily sized page).

Clearly, paged SDWs are not very useful. If paged SDWs were not remembered
in the AM then all 826 matches per second with paged SDWs (average) would be
replaced by memory references for a DSPTW and the SDW, requiring about
826%(1.2us +‘1.2p8) = 1982 us out of each second, which would slow the
instruction execution rate by approximately .2%. This is an absolute upper
bound on the performance decrease that could result. On the other hand, not
remembering paged SDWs in the AM would free ARs to remember more non-paged
SDWs and PTWs, effectively increasing the useful size of the AM. Just how
many ARs, on the average, are occupied by paged SDWs is hard to estimate.

But currently, for each of the 3,158 PIWs per secbnd written into the AM, the
corresponding SDW must be in the AM when the write occurs, and it takes at
least 16 more writes to the AM to push the SDW out the bottom. So the change
would appear to free some ARs. The net effect should be a small performance

increase, especially while programs with large working sets are executing.

The change suggested could be made quite easily. All that is needed is to
make the writing of an SDW into the AM by the appending cycle conditional

on the paged/not paged bit of the SDW. J. Ammons indicates that this can be
done by removing one wire from each of two pins on the AM door’of the CPU.
No further changes would be necessary. This change might be good for a small
performance increase with the current hardware until a follow-on processor is

available.

Design of an AM for the 645 follow-on processor

MHDM-5 is a‘draft of a proposal for a follow-on processor to the 645 CPU.
This new CPU would embody all the essential features of the 645 CPU, as
well as certain refinements and additions. As the data collected in the
counter measurements of the 645 CPU have shown, an AM is a necessary unit
of a CPU which performs address appending of the sort required by Multics.
Thus, an AM would be an important part of the follow-up processor. In this
section two possible designs for that AM are discussed, and the design 1

considered to be most suitable by this author is identified.
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The following discussion assumes familiarity with the proposals of MHDM-5
for a follow-on processor. Several aspects in which the follow-on processor
woiild be different from the 645 CPU affect AM design. These are summarized
beiow:
1. The follow-on processor would recognize only one page size.
This size would be adjustable between the limits of 64 words and
4096 words by a field engineer. Two fixed page sizes are
recognized by the 645 CPU.
2. A fairly elaborate protection mechanism would be built into the
CPU. This would result in 72 bit SDWs with very long description
fields. PTWs would still be 36 bits, but contain no descriptors.
3. The bound field of an SDW would specify length in units of 8 words.
4. The address fields in SDWs and PTWs would have different lengths
and precisions.
5. " Ring crossing would occur without a fault, thus tending to increase

the length of time a processor may run without clearing the AM.

The effect of each of these differences on AM design will be brought out later.

General considerations -- Before considering specific design proposals,
several general characteristics that any AM design for the proposed follow-on

processor must have are discussed.

Consider the stream of memory references produced by a 645-1like CPU executing
Multics with the AM disabled. 1Ignoring the occasional direct references by
absolute address which occur, this stream would appear at one grain as a
string of virtual memory references. Within each virtual memory reference
would appear a DSPTW and SDW retrieval, and perhaps a PTW retrieval, as well

as the instruction, indirect word, or operand reference.

virtual memory reference virtual memory reference
- N
read read read ‘read read read read write
.« | DSPTW SDW PTW l‘;i?,ﬁ“‘ DSPTW SDW PTW | operand |---

time —
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A well designed.processor will make every effort tb minimize the gap between
individual core references by buffering and decoding several instructions

at once, and performing arithmetic and logical operations in parallel with
memory references, for memory references take quite long when compared with
the internal speed of a CPU. The amount of parallelism which can occur,
ho&ever, is constrained by the fact that a reference may depend upon data
derived from the preceeding reference, or the result of the preceeding
instruction. Thus, sequence must be maintained. A completely densely

packed string of core references is the limit on processor speed.

A 645-1ike associative memory removes some of the appending word accesses
in some of the virtual memory references by inserting the AM search cycle
before all virtual memory references. The stream of memory references
generated by the processor running with the AM in operation would reflect

the AM search and read cycles.

virtual memory reference virtual memorx\feference
[ N\ /7 ’ N\
' AM AM read . AM read read | read | write P
“"’|search| read [instruction |Search DSPTW SDW l PTW Operandl"'J/

time —

The first virtual memory reference above illustrates a match on the AM
search. The following AM read cycle replaces 3 appending word references to
memory. The second virtual memory reference above illustrates a ''mot found"

on the AM search. The normal appending word references to memory follow.

Not shown above are the AM write and adjust usage counters cycles. These
occur in parallel with memory references, and are thus transparent from this
point of view. That the write and adjust usage counters cycles can both
occur in the time of a single memory reference is all that is necessary.
(Because of this, the adjust usage counters cycle of the 645 AM may be overly
fast. 1Instead of using 16 subtractor/comparators and updating all usage
counters simultaneously, there may be enough time to use only one subtractor/
comparator and update them sequentially. This should be investigated with

respect to the AUC cycle in the AM of the follow-on procession.) The AM
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search and read cycles, however, must largely occur in sequence with the
meinory references. By greatly increasing the complexity of the internal
lozic of a CPU, the AM search and read cycles can sometimes be made to occir
in parallel with memory references, but it is impossible to always hide it.
In the same way‘that the memory cycle time limited CPU speed, then, the AM
search and read cycle times have a limiting effect on CPU speed. It is
therefore very important that the AM search and read cycles be as fast as

possible.

The times for the three passes of the 645 CPU AM search are 216ns, 234ns,
and 216ns, respectively. Multiple passes are required in the case of

the 645 because two page sizes are recognized. It is necessary to know the
page size used by a segment before the proper page number ¢an be calculated
from the given word number. PASS1 determines the page size from which a
page number is calculated for PASS2. PASS3 is never entered unless a
match is assured, so as long as the time for this pass is shorter than a
memory cycle (which it is) it is helping to increase the instruction

execution rate.

The follow-on processor would recognize only one page size. Thus, a single
pass AM search is possible, and should be required. Again, this search

should be as fast as possible.

A second general consideration is the size of the AM for the follow-on
processor. It should not be smaller than the AM for the 645 CPU. Several
points are relevant. The experiment described in the previous section of
this report indicated that cutting the 645 CPU AM from 16 ARs to 8 ARs
lowers the instruction execution rate by 5.6%, a significant amount. More-
over, in the proposed follow-on system the ratio of memory cycle time to
AM search time may be as high as 5:1 (hopefully), compared to ~ 3:1 for the
645 system. Because of this, the relative penalty of a "not found'" search
result is greater with the follow-on system. Next, the page size for the
follow-on system may be as small as 64 words. With such a small page size
(the current 645 page size is 1024 words) more pages will be included in

the working set of a process, and thus more AM space required for the PTWs.



Finally, the proposed hardware ring switching mechanism for the follow-on X
machine would have the effect of increasing the average time between AM fﬁjifﬁf’)
clear cycles. It will no longer be necessary to clear the AM each time “xdvy"
rings are switched, either as the result of a call, a fault, or an

interrupt. This may have the effect of moving to the right the point

where the curve of the instruction execution rate with respect to AM size

becomes flat.

Direct extension of 645 CPU AM design ~-- The most obvious design for the AM
of the 645 follow-on is a direct extension of the current AM. This approach

is now explored.

Some of the changes that must be made are caused by the different SDW and
PTW formats. An SDW for the follow-on system would have the following fields:
. ADDR, 24 bits, contains the full absolute address of the base of
the segment.
. BOUND, 15 bits, contains the length of the segment in 8 word blocks.
. DESC, 30 bits, contains access keys, a paged/unpaged flag, and a
15-bit "call limiter" which defines those words of a segment which
are entry points.
. FAULT, 3 bits, contains a directed fault flag and code.
A PIW for the follow-on system would have the following fields:
. ADDR, 18 bits, contains the high order 18 bits of the 24-bit
absolute page address
USED, 1 bit, indicates whether or not the page has been used since
the last time this flag was reset.
MODIFIED, 1 bit, indicates whether or not the page has been used
since the last time this flag was reset,
FAULT, 3 bits, contains a directed fault flag and code,
“An AR which contains an SDW must have room for all SDW fields with the excep-
tion of the 3-bit FAULT field. This totals 69 bits. In addition, a 15-bit
segment number tag, an SDW/PTW bit, an Empty/Full bit, an adjust usage counters
bit, and a usage counter are required. With a 16 AR AM a 4-bit usage counter

is necessary, for a grand total of 91 bits in each AR.



An AR which contains a PTW must contain the 18-bit ADDR field and the
MODIFIED bit from the PTW. 1In addition, all of the 30-bit DESC field
from the associated SDW (except perhaps the paged/unpaged bit) and the
15-bit bound field must be included. Finally, a 15-bit segment number
tag, a 12-bit page number tag (the page size can be set to as small as

64 words) plus the 7 bits of control fields listed above must be included.
The grand total here is 97 bits.

It is not clear, however, that the job could be easily done with the maximum
of these two values as the AR length. To do so would require that the field
divisions in ARs for SDWs and PTWs be substantially different. This would
complicate the control logic of the search, read, and write cycles. Aligning
the fields to remove this complication would increase the AR length from 97

bits to approximately 104 bits.

Now consider the required single pass search applied to this AM. Since the
page size is known in advance, the search would be for a segment number and
page number match on a PIW, a segment number match on a non-paged SDW, or

a segment number match on a paged SDW if no PIW match was found. The control
logic for performing such a complex search in one pass may be complex and
expensive. More importantly, it may be slow. The complication is that
several sorts of matches must be looked-for on the same search cycle.

Applying the simplification of not remembering paged SDWs in the AM, as was
suggested for the 645, would reduce the complexity of the search by elimin-
ating the possibility of multiple matches on the same search cycle instance,
but non-paged SDWs would still have to be contended with. Eliminating paged
SDWs may not be a good idea, however, for in the follow-on system the page size
can be as small as 64 words. Under these circumstances more PTWs are required
to describe a given number of words of virtual memory, and paged SDWs might

be used often enough to warrent keeping them in the AM.

A second proposal -- Another objection to the above AM design is that it makes
inefficient use of the storage capacity of the AM. In the case of the 645,
each PTW contains a possibly different descriptor which is consulted on each
use of the PTW in the appending cycle. It is therefore necessary that indivi-

dual descriptors be remembered in ARs which contain PTWs. In the case
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of the follow-on processor PTWs do not contain descriptors. The descriptor
saved in an AR which contains a PTW is a direct copy of the descriptor from
the SDW of the containing segment. If more than one PTW for the same

segment is in the AM, then each will carry a copy of the same descriptor.
This suggests that more efficient use of AM storage capacity could be made by
factoring the descriptors out of PTWs for the same segment, something that 1is

not possible for the 645, but would be for the follow-on processor.

This observation leads to an AM design for the follow-on processor which
allows factoring and has none of the objectionable characteristics of the
direct extension proposal above. The proposal is to provide the follow-on
processor with two AMs; one for SDWs and one for PIWs. This design is

presented below, and the arguments in its favor are developed.

Figure 8 illustrates a format that contains all necessary fields for an

AR in AM.de

except the directed fault flag and its associated code. Since SDWs with

. Bits O through 68 contain direct copies of all SDW fields

directed faults are never put in AMsdw’ it is not necessary to save these
fields in an AR. Following the SDW information is a segment number tag,
an empty/full Bit, an adjust usage counters bit (possibly unnecessary),
and a usage counter. The length of the latter depends on the size of

MM aw®

A search of AMs involves finding the AR whose empty/full bit has the

dw
value "1" and whose segment number tag matches the given segment number.

Zero or one ARs can match.

Figure 9 illustrates a format that contains all necessary fields for an
AR in AMptw' The address field and the modified flag from a PTW occupy’
the first 19 bits. Other PTW fields need not be included. Following
the PTW information is a page number tag, segment number tag, and the
same id@ernal chtrol fields that appear in AMSd .

W

A search of Alvl.ptw involves finding the AR whose empty/full bit has the
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value "1" and whose segment number and page number tags match the given

segment and page number. Zero or one ARs can match.

The read, write and adjust usage counter cycles for the two AMs are the
same, respectively, and very similar to those cycles in the 645 AM. The
read cycle places the contents of the AR found by a search (if any) on the
AR output lines. The write cycle places a new entry into the AR with usage
count '0000". The adjust usage counters cycle decrements by one the usage
counters of all ARs whose usage counters are greater than the usage counter

of the AR just read or written.

Figure 10 illustrates how the two ARs would be used in the appending cycle

of the follow-on processor. The appending cycle begins at the upper left
with a simultaneous search of both AMs. A match in either or both of AMsdw
and AM.ptw is followed by read and adjust usage counter cycles in either or
both, respectively. If AMde finds no match, the appending cycle is entered
(top of right column) and the needed SDW retrieved if no faults or out~of-
bounds conditions are encountered. If the SDW is unfaulted, then it is written
into AM.sdw and the usage counters for AMsdw are adjusted. Control is now at
the point where the match and no match paths from the AMde search meet. The
SDW obtained by either means is checked for an out-of-bounds reference. If

a fault does not result, it is determined whether or not the AMptw search

was successful. If so (left branch), the modified flag in the PTW from
AMptw is checked to see if it must be set to 1", This will be the case if
it is currently "0" and the operation about to be performed includes a write.
" Setting can be easily accomplished by a zone write to the PTW in memory

(the address field from the associated SDW is always available at this

point) and a set modified bit cycle to AMptw' Once this is done (if it is
necessary), access is checked against the SDW descriptor, and the final

reference made if allowed.

If the AMptw search failed (downward branch), then the SDW is checked to
determine if the segment is paged. If not (left branch), access is

checked and the final reference made. If it is paged (downward branch),
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the PTW needed is retrieved from memory. If unfaulted, the used and modified
bits are inspected. If either must be changed, this is done by a zone write
| to memory. The modified bit in the copy of the PIW to be saved in AMptw

is set to the updated version, and the AMptw write and adjust usage counter
cycles initiated. The final access check and reference are then performed.

Functionally, AME v and AMptw are almost identical. They are similar enough

that both may be gble to use identical control circuits. Since individually
thev are less complex than the AM derived by direct extension of the 645 AM
above, this split AM design is simpler than the direct extension proposal.

The appending cycle itself is also simpler, particularly with respect to
updating the modified bit in memory in the case where the PTW has been obtained
from the AM (see Figure 3). The design also makes efficient use of AM spacé

by factoring descriptors out of PTWs as discussed earlier. For example, a

16 register AM of the first design (104 bit ARs) would require a total of

1624 bits of register. It would have the capacity to remember 16 PTWs and/or

dw
require a total of 1552 bits of registers. It would have the capacity to

SDWs. The combination of a 16 register AMptw and an 8 register AMS would

remember 16 PTWs and 8 SDWs. Finally, paged SDWs are saved without increasing
the complexity of the one pasc search. This may provide a significant perfor-
mance increase if page sizes smaller than 1024 are eventually used in the

follow-on system.

Close examination of Figure 10 reveals that the circumstance can arise that

dw’
Because the PTW lacks the required descriptor the SDW must be retrieved from

a PTW is found in AMﬁtw’ but the corresponding SDW is not found in AMs

memory in this case. This is not a serious shortcoming of the split AM design.
First of all, because the usage counters of both AMs are kept up to date with
each use, the order of SDWs in AMde will always reflect the order of PTWs

in AMptw' If only paged segments are represented by entries in the two AMs
then it is impossible for the circumstance to occur. The trouble comes when

non-paged SDWs are written into AMS These will overwrite paged SDWs with-

dw’
out pushing the PTWs out of AMptw’ leading to a situation where the circum-
stance can occur. Consider the behavior of a split AM with an n register

AM and an n register AM , and a 645-1ike AM with n registers in this
sdw ptw
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situation. The non-paged SDWs push out the entries that allow access to thae
sane pages in both cases. Thus, where the split AM may subsequently find

a PTW but not an SDW, the 645-like AM will find no entry at all. More
memory references result from the latter. If AMSdw is smaller than the
645-1ike AM, then the circumstances could occur in the split AM alone, but

this would not happen frequently enough to be a problem.

sdw/AMptw' 16/8 would probably

be sufficient. But 16/16 has the advantage of making the two AMs closer to

This brings up the question of the size of AM

identical (identical control logic circuit modules could perhaps be used for
both), as well as guaranteeing that the split AM would always work as well or
better than a 16 register AM of the 645 kind. (In the case that the AM
contained appending words for 16 different segments, the 16/8 split AM would
have a disadvantage with respect to the 16 register 645 like AM, but the 16/16
split AM would not. The 16/16 size also insulates the system against changes

brought about by smaller pages and longer periods beween AM clears.

It is this author's recommendation that a 16/16 split AM design be incorporated

in the follow-on processor.
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1 CPU, 256K Memory
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Number of QSUL1 pulses
observed in 10 seconds
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1 CPU, 256K Memory
6/10/70 35 users

Number of QSUS1 pulses
observed in 10 seconds
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Figure A2 : QSUS1 pulses from
a 16 Register Associative Memory
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1 GPU, 256K Memory
6/10/70 35 users

Number of QSSFl pulses
observed in 10 seconds
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1 CPU, 256K Memory
6/10/70 35 users

Number of SDWs written

into the AM in 10 seconds

35,249
55,238
45,200
56,992
58,380
58,173
44,057
71,343
67,699
56,487
58,993
85,897
56,373
61,845
80,200
80,589
86,994
77,126
66,086
67,691
68,967
54,072
54,268
75,985
53,097
77,541
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1 CPU, 256K Memory
6/10/70 35 users

Number of PTIWs for large

pages written into the AM 4,000 <

in 10 seconds

39,620 23,957
38,309 39,922
33,435 30,581
29,785 26,771
30,644 40,180
38,191 45,419
18,883 34,826
34,222 21,484
25,678 27,849
21,951 35,114
13,746 28,496
26,728 32,873
38,173 27,368

40,401 42,096
21,092 34,917
35,817 29,552

41,490 28,163
30,239 30,285
26,325 31,208
35,561 32,144
36,963 28,032
45,884 29,099
26,574 31,188
28,212 24,034
41,689 30,861
30,844 28,052
28,550 31,539
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