MPL-54

To: Multics Performance Log
From: A. Sekino

Date: June 16, 1971 -

Subject: Measurement of Memory Cycle Interference

It has been observed that the per event overhead time of a.
two processor system is much longer than that of a one processor
system (See MPL-53). This increased overhead is due to (1) the mem-
ory cycle interference, i.e., the interference caused by occasional
conflicts of two processors for memory cycles of a particular core
memory box and (2) the data base lockout. As far as the system over-
head is concerned, the second is the major effect especially in the
current Multics implementation (this will be reported in a separate
MPL in the near future). However, the first effect increases not
only the overhead but also the effective CPU demand of each user's
computation simply because processors run more slowly.

This memo describes the result of experiments evaluating
the first effect, i.e., the memory cycle interference. For this pur-
pose, several special programs were coded in assembly language. Then,
these programs were run and measured using a real-time hardware clock.
It was found that programs representative of typical Multics users
run at the approximately 207% reduced speed when the two programs com-
pete for memory cycles of the same core memory box at all times and
that they run at the approximately 7% (=~ 20 x 1/3) reduced speed if
the programs are scattered over three core memory boxes. One of the
programs representative of memory bound computation, which were run
on the two CPU system, competing in a single core memory box showed a
show-down effect amounting to 52%. The consistency of these results
imply that the typical Multics users are spending 7% increased CPU
time because of memory cycle interference on the normal two CPU con-
figuration system.

1. Introduction

The degree of memory cycle interference depends on many
factors such as the system configuration (the number of processors
and core memory boxes, the relative location of programs in the core
memory system), the characteristics of the program being run (the
proportion of time during the length of which the memory must be tied
up, the length of each memory cycle, the relative timing of comsecu-
tive memory cycles), and the characteristics of the program which
executes on another CPU, Therefore, if the execution time of a particular

Page 2 MPL-54

program is to be measured on the two CPU system for the purpose of com-
paring the resulting execution time with the corresponding execution
time measured on the single CPU system, the system configuration and

the characteristics of two mutually competing programs must be accurate-
ly specified.

Because we are most interested in the performance of typical
Multics programs running on the normal two CPU configuration system, the
memory cycle interference of a typical program running against another
typical program must be evaluated in the case of three core memory
boxes. The measurement of interference of memory bound programs is also
interesting because such measurements give a sort of upper bound for the
typical degree of interference. On the other hand, the interference to
be encountered in the case of only one core memory box (complete inter-
ference) should be measured, because the result of such basic measure-
ments can be used in predicting the degree of interference expected in
the case of the arbitrary number of core memory boxes. However, it will
turn out that this measurement is fairly complex and hard, as will be
described later,

2. The Programs to be Measured

- To begin with, two short instruction sequences intended to
represent a portion of typical Multics user programs and two memory
bound instruction sequences intended to represent a sort of the worst
case were created to be incorporated into the programs to be run in the
experiments. In designing the typical instruction sequences, it was
carefully considered that the sequences should possess at least the
average characteristics, of typical Multics programs, concerning both
the instruction execution rate and the number of memory references per
instruction®*, Therefore, these sequences are assured to possess at
least the typical characteristics concerning the proportion of time
during the length of which the memory is to be tied up. On the other
hand, the memory bound sequences were more arbitrarily designed.
Actually, a particular instruction chosen somewhat arbitrarily is simply
repeated many times using a "repeat" instruction in each of these se-
quences. The usage of repeat instruction makes it possible to avoid
instruction fetching otherwise needed each time the same instruction is
repeated and therefore only the memory reference needed for operand
manipulation is periodically repeated.

Each of the particular instruction sequences used in the ex-
periments is given below. The sequences named "mipt_ty" and 'mip_ty*"
are intended to represent a portion of typical programs and the omes

* M. Schroeder reported in MPL-51, 52 that 341,945 instructions making
a total of 419,425 memory references were executed per second, on
average, by the heavily loaded single processor system.

MPL-54 Page 3

named "mipt_lda" and "mipt_orsq" are memory bound sequences®. The
execution of each sequence takes roughly 200 ~ 300 microseconds on the
single processor system. Each program was designed to contain one of
these sequences and the chosen sequence was repeatly executed 100 times
using an outer loop in the program. In order to detect the distortions
caused by occasional interrupts and drum transfers, the real-time system
clock was read at both the beginning and the end of instruction sequence
in each of those 100 repeated cycles. If the execution time of a cycle

(mipt_ty) (mipt_ty*) (mipt_lda)
»lda y >1da y2 rpt 200 times
aos w aos w2 lda x,7
ada X ada x2
w| sbaq z « | sbaq z2
g| ada y % ada y2
T} eapbp bplo,* T | staq u (mipt_orsq)
ol ldaq bp.O o |eapbp bpl|O,*
~| eax0 -5 — | 1daq bp |0 rpt 50 times
eaxl -1,1 eax0 -5 orsq x,7
-tnz -9, ic eaxl -1,1
-tnz -10,ic

was found to be longer than the predetermined threshold time which is
properly longer than the expected execution time, then the measured
execution time of that cycle was judged to have been distorted and simply
discarded. Furthermore, each program was coded into a one-page impure
segment in order to assure that both instruction and operand references
are directed to the same memory controller,

3. The Measurement Method and the Associated Problems

It was initially decided that all the experiments would be
carried out from the user consoles, during the normal user sessiom,
using only facilities which are available to normal comsole users.
Under this condition, no particular difficulty was encountered on the
single processor system, in measuring the execution time of the programs
mentioned above, except the careful setting of the threshold time to
discard the distorted data. The measured execution times were found to
be fairly stable and almost independent of the system conditions, possess-
ing a distribution with a small variance. On the other hand, there exist
some difficulties in measuring the program execution times on the two CPU
system, because many factors concerning the programs and the system affect
the result significantly, as mentioned in the introduction.

* The sequence '"mipt_ty" was designed by J. H. Saltzer.

Page 4 MPL-54

Two kinds of experiments were carried out for each of these
four programs on the two CPU system., The first kind of experiments
aim to evaluate the degree of memory cycle interference to be exper-
ienced by users competing with normal (typical) Multics users running
on the Multics full configuration system (2 CPUs and 3 core memory
boxes). For this purpose, each program was run when the full configura-
tion system was heavily loaded, so that it is relatively likely that one
of the normal Multics users is using another processor at almost any
time during which each of those programs is being run. Because the char-
acteristics of the user running on another processor and its usage of
core memory commot be exactly controlled, except in a statistical sense,
the result shows a distribution with a large variance. Therefore, the
sample size of this experiment was chosen to be much larger than that of
the single processor measurements.

The second kind of experiments aim to evaluate the degree of
memory cycle interference to be experienced by each user running against
the same sort of user as himself running on another processor using
‘the same core memory box at all times. In this experiment a special
arrangement must be made to ensure that (1) two programs of the same sort
use the same core memory box at all times during the measurement period
and (2) these programs are running at all times during the same period
on both processors. The first requirement was satisfied by combining
those two programs to be run simultaneously into a page of shared segment
in such a way that the segment has an entry for each impure program, as
shown in Figure 1. The second requirement was satisfied by using a
two-step synchronization of the operations of two programs. The first
step synchronization, intended to be a rough synchronization, was carried
out using Multics inter-process communication facilities. Now let those
two processes expected to execute the combined segment be Process A and
Process B, As shown in Figure 1, Process A activated from a comsole
blocks itself first and then Process B activated from another comsole
wakes up Process A and calls the combined segment via one of those two
entries, continuing to use, say, CPU 2. The awakened Process A is then
scheduled, obtains CPU 1, and calls the same combined segment via another
entry. Therefore, the delay associated with the scheduling of Process A
corresponds to the error of the first step synchronization. The second
step synchronization, intended to be a refined synchronization, was
carried out using an interlocking technique. The use of this technique
allows each process to start executing the imbedded instruction sequence
chosen for this combined segment only when both processes are ready to
do so, as is clear in Figure 1. Because the eligibility time (quantum)
of the Multics multiprogrammed scheduling scheme is fairly short (two
seconds), the first step rough synchronization was needed. Actually, it
was observed in one of the measurements made on the moderately loaded
system (46 simultaneous users) that the error of the first step synchron-
ization ranged from 0.4 seconds to 2 seconds and the error of the
(successful) second step synchronization from 1 to 10 microseconds.

MPL-54

Process A

block itself <

- ———— ———— — — — — — — — 4~ wakeup process A

opyl: junlock lock 2

lockl: |loop here until lock 1 is unlocked
clock read 1

100

l clock read 2

measured copy
times| of mipt

L_‘ clock read 3

clock read 4

clock read 5

50 [non-measured copy
times | of mipt

L__ clock read 6

clock read 7

<:;:i“ return
copy2: lunlock lock 1

lock2: |loop here until lock 2 is unlocked
clock read 1 ‘

100

I ™ clock read 2

measured copy
times | of mipt

L__ clock read 3

clock read 4

r’ clock read 5

50 non-measured copy
times | of mipt

L__ clock read 6

clock read 7
return

Page 5

Process B

call mipt$copy2 —

one page of
impure combined
segment

Figure 1: Two-Step Synchronization of Two Processes
Executing the Impure Combined Segment

Page 6 . .~ MPL-54

In this manner, each of the memory bound programs (mipt_lda,
mipt_orsq) were run against another copy of itself. Similarly, the
program "mipt ty'" intended to be a typical program was run against
another copy of "mipt_ty'", but in this case a very interesting timing
problem was observed. When two "mipt_ty" copies were executed in parallel
in almost complete synchronization on two processors, the measured exe-
cution time of each program was found to always be one of two widely sep-

-arated values, each of which is about equally likely. These two values
apparently correspond to two modes of precise, instruction-by-instructionm,
synchronization of the identical programs. Therefore, it was decided to
get the second copy (mipt_ty*) to have slightly longer length by insert-
ing "staq" instruction in the middle of mipt_ty and then those two con-
jugate programs (processes) will be hopefully staggered in all ways when
they are run simultaneously, avoiding the above timing problem.

Another care exercised concerns the distortion caused by
interrupts and drum data transfers. It was sometimes observed that the
second step refined synchronization was not successful; while Process B
was waiting for Process A at "lock 2" after unlocking "lock 1" for
Process A, Process B was preempted by the higher priority process, which
had been possibly in a page-wait status when Process B had obtained the
processor, and then Process A arrived at '"lock 1" using another processor
and started executing the imbedded instruction sequence much earlier
than Process B, In order to decrease the possibility of preemption inter-
rupts during the refined synchronization period, the second kind of
experiments were, after all, carried out on the lightly loaded system.

The occasional preemption interrupts were detected by examining the
difference of the first clock readings of the competing programs (see
Figure 1) and these distorted data were all discarded.* The interrupts
and drum data transfers may occur also during the execution of the imbedded
instruction sequence. This kind of distortions were detected by examining
the difference of a pair of clock readings which sandwich each instruc-
tion sequence and the measurement datum was discarded if any interrupt or
drum data transfer was detected in this manner during the execution of

any part of these two competing instruction sequences. because it is not
guaranteed that the two processes ran without any distortion. Moreover,
the same instruction sequence (non-measured copy; See Figure 1) was exe-
cuted for some time after the measurement of the instruction sequence was
finished in order to guarantee that the slower process also competes with
the supposed competitor even towards the end of the execution of the instruc-
tion sequence being measured.

* The use of "interrupt inhibit" mode would solve this problem completely
if the normal users were allowed to use it,

MPL-54 Page 7

4. The Measurement Results

The execution time to be required by 100 passes of each instruc-
tion sequences was measured, controlling the system configuration and
avoiding the distortions, in the way described in the previous section.
All the results are summarized in Table 1.

When the programs were run on the single processor system it
was observed that each of them runs approximately 30% more slowly than
the expected time derived being based on the catalogued instruction exe-
cution time for Honeywell 645.* According to J. Ammon's speculation,
this discrepancy is due to the combination of the slower memory cycles
(5 ~ 10% slower than the catalogued values), the slower logic operations
(details are not known), and the delay caused by associative memory
searches (additive 300 nsec. per successful search).

The results of mipt_ty and mipt_ty* obtained by running against
normal (typical) users on the full Multics configuration system suggest
that the typical users run at the approximately 7% reduced speed because
of only memory cycle interference,.** (In deriving the effective speed of
typical users on real Multics, other factors such as data lockout must
be considered). When a typical program (mipt_ty) was run against another
typical program (mipt_ty*) using two processors and only one core memory
box, the programs ran at the approximately 13 ~ 20% reduced speed. This
result agrees to the prediction which can be derived from the 6.5% degrad-
ation measured on the full configuration system and the assumption that
normal users use each core memory box with approximately equal probability.
That is to say,

106.5 == 100 x % + 119.9 x %.

* For example, the expected execution time of one hundred cycles of
"mipt_ty" is 22341 microseconds while the measured execution time
was 28905 microseconds (29% slower) on the single processor system.

*% The execution time of each sequence against normal users depends
which users happen to be simultaneously on the system. Therefore,
the experiments for these four sequences were carried out in the
same console sessiom.

MPL-54

Page 8

*98e19AR SIT WOIJ UOTIBTASD
€ Se pojuossides sT juswriedXe Yoee UI DPOAISSQO SWIJ UOTINOIXD (WNWTXBW) WNWIUTW 9YJ xy
puod9s 1ad suOTIONIISUT GH9 TISMLAUOH UOTTTIW = sdTw

[8€] I8T1° [ov] 6SC° sle® 93el ‘9ae
S6./+ 786+ GZ8+ ‘xXeu
L8~ Ye11- 08¢~ ‘utu
(%L°15+) 6262 (%8°s+) £9%02 L6261 *oAe bsio adrum
[9¢] oLY® [o¥] L8G* 0%9° 9jex °d4e
791+ [A%:1% 729+ ‘Xeu
709~ A A% %l 09.- ‘urw
(%z°9¢+) 091€Y (%Z1°6+) 8LSY€E 9691¢€ *oae epl 3drm
[9€] 61€" [ov] Gee” 09¢"* 9381 ‘*94E
626€+ 9LLT+ 686+ ‘Xew
©E6T- €ILT- 66¢€- ‘urw
(%8°21+) 1L0S€ (%S * L+) 1SYEE z801¢€ *sae x£1 3dmm
[9g] sdru ¢6z* [ov] sdru zgg* sdtm g¢gg* 93B1 ‘9AE
oosT 1HeHpt o9sT 9661+ o9sT™ 069+ *xeu
29sT 0691~ o9sT ggeT- d9sT 06z~ *utuw
(%6°61+) o9sT gooyg (%S°9+) - o9sT 48/0¢ o9sT c0687 *dae £373dw
(suwr3 ur (sut3 ur
9seaJoul 9seaIoUT
Juadaad) Jusoxad)
9ZTS (x0q @100 T) 9ZTS (saxo0q @100 ¢) Juswrxadxe
o1due @3e3nluoo s31 10 o 1dure sI19sn yoes ut
Adoo a9yjoue jsurele Jeuou jsureSe so1dues (g 9ouonbes
sNdd ¢ ndo 1 UOTIONIJSUT
SOWI] uoTINO9Xy wei8oad poINsSesS| YL 1 @198l

MPL-54 Page 9

Each of memory bound programs naturally suffered from severer
degradation when they were run on the two CPU system. Especially, when
mipt_orsq was run against another copy of mipt_orsq using a single core
memory box 527 degradation was observed. This actually means that the
proportion of time during the length of which the memory must be tied
up for the operand manipulation of a single copy of mipt_orsq is (at
most) 76% (= 152% /2) of its execution time.* The reason why the same
sequence did not suffer very much when it was run against normal users
is that the "orsq" instruction uses a "read-alter-rewrite" cycle, which
is much longer than the more frequent memory cycles, and exclusively
occupies the memory during this rather long cycle time, giving the nor-
mal user the lesser chance to execute its program. On the other hand,
the "1da" instruction of the sequence "mipt_lda" uses a normal "read-
rewrite" cycle and therefore this sequence suffered more (9.1% degrad-
ation) than the sequence "mipt_orsq" in the above situation.

% This remark is consistent with the following observation. Each
repeated execution of "orsq'" takes 3.69 usec (measured) making
a "read-alter-rewrite" cycle which requires 2.69 psec (estimated).
Therefore, the proportion of time during the length of which the
memory must be tied up is about 73%.

